Advertisement

Processing of Peptides

  • Renu Srivastava
  • Stephen H. HowellEmail author
Chapter
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 16)

Abstract

Plant peptide signaling molecules are subject to proteolytic processing and/or to various forms of posttranslational modifications. Most signaling peptides are secreted and made as prepropeptides from which signal peptides are removed as they are translocated across the endoplasmic reticulum membrane. Proteolytic processing of propeptides may be required to regulate their activity, for peptides to fold properly, to navigate the secretory pathway, and to diffuse freely in the apoplast. Posttranslational modifications of peptides in plants include tyrosine sulfation, proline hydroxylation, and hydroxyproline arabinosylation. The proteases responsible for processing some plant peptides have been determined and shown considerable specificity for their propeptide substrates. New high-throughput screening technologies can be used to match up peptides to their processing machinery or identify propeptide substrates of various proteases.

Keywords

Secretory Pathway Amino Acid Peptide Mature Peptide Intramolecular Disulfide Bond Fluorogenic Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aloy P, Companys V, Vendrell J, Aviles FX, Fricker LD, Coll M, Gomis-Ruth FX (2001) The crystal structure of the inhibitor-complexed carboxypeptidase D domain II and the modelling of regulatory carboxypeptidases. J Biol Chem 276:16177–16184PubMedCrossRefGoogle Scholar
  2. Amano Y, Tsubouchi H, Shinohara H, Ogawa M, Matsubayashi Y (2007) Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. Proc Natl Acad Sci USA 104:18333–18338PubMedCrossRefGoogle Scholar
  3. Berger D, Altmann T (2000) A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Genes Dev 14:1119–1131PubMedGoogle Scholar
  4. Brix K, Linke M, Tepel C, Herzog V (2001) Cysteine proteinases mediate extracellular prohormone. Biol Chem 382:717–725PubMedCrossRefGoogle Scholar
  5. Casamitjana-Martínez E, Hofhuis HF, Xu J, Liu CM, Heidstra R, Scheres B (2003) Root-specific CLE19 overexpression and the sol1/2 suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance. Curr Biol 13:1435–1441PubMedCrossRefGoogle Scholar
  6. Cheng D, Espenshade PJ, Slaughter C, Jaen JC, Brown MS, Goldstein JL (1999) Secreted site-1 protease cleaves peptides corresponding to luminal loop of sterol regulatory element-binding proteins. J Biol Chem 274:22805–22812PubMedCrossRefGoogle Scholar
  7. Covey PA, Subbaiah CC, Parsons RL, Pearce G, Lay FT, Anderson MA, Ryan CA, Bedinger PA (2010) A pollen-specific RALF from tomato that regulates pollen tube elongation. Plant Physiol 153:703–715PubMedCrossRefGoogle Scholar
  8. Deperthes D (2002) Phage display substrate: a blind method for determining protease specificity. Biol Chem 383:1107–1112PubMedCrossRefGoogle Scholar
  9. Djordjevic MA, Oakes M, Wong CE, Singh M, Bhalla P, Kusumawati L, Imin N (2011) Border sequences of Medicago truncatula CLE36 are specifically cleaved by endoproteases common to extracellular fluids of Medicago and soybean. J Exp Bot 62:4649–4659PubMedCrossRefGoogle Scholar
  10. Escobar NM, Haupt S, Thow G, Boevink P, Chapman S, Oparka K (2003) High-throughput viral expression of cDNA-green fluorescent protein fusions reveals novel subcellular addresses and identifies unique proteins that interact with plasmodesmata. Plant Cell 15:1507–1523PubMedCrossRefGoogle Scholar
  11. Espenshade PJ, Cheng D, Goldstein JL, Brown MS (1999) Autocatalytic processing of site-1 protease removes propeptides and permits cleavage of sterol regulatory element-binding proteins. J Biol Chem 274:22795–22804PubMedCrossRefGoogle Scholar
  12. Fisher JM, Scheller RH (1988) Prohormone processing and the secretory pathway. J Biol Chem 263:16515–16518PubMedGoogle Scholar
  13. Fleischer A, O’Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121:829–838PubMedCrossRefGoogle Scholar
  14. Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–1914PubMedCrossRefGoogle Scholar
  15. Ghosalia DN, Salisbury CM, Maly DJ, Ellman JA, Diamond SL (2005) Profiling serine protease substrate specificity with solution phase fluorogenic peptide microarrays. Proteomics 5:1292–1298CrossRefGoogle Scholar
  16. Henrich S, Cameron A, Bourenkov GP, Kiefersauer R, Huber R, Lindberg I, Bode W, Than ME (2003) The crystal structure of the proprotein processing proteinase furin explains its stringent specificity. Nat Struct Biol 10:520–526PubMedCrossRefGoogle Scholar
  17. Henrich S, Lindberg I, Bode W, Than ME (2005) Proprotein convertase models based on the crystal structures of furin and kexin: explanation of their specificity. J Mol Biol 345:211–227PubMedCrossRefGoogle Scholar
  18. Huffaker A, Pearce G, Ryan CA (2006) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci USA 103:2610098–2610103CrossRefGoogle Scholar
  19. Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842–845PubMedCrossRefGoogle Scholar
  20. Kondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T, Fukuda H, Sakagami Y (2006) A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science 13:845–848CrossRefGoogle Scholar
  21. Kondo T, Kajita R, Miyazaki A, Hokoyama M, Nakamura-Miura T, Mizuno S, Masuda Y, Irie K, Tanaka Y, Takada S, Kakimoto T, Sakagami Y (2010) Stomatal density is controlled by a mesophyll-derived signaling molecule. Plant Cell Physiol 51:1–8PubMedCrossRefGoogle Scholar
  22. Liu JX, Srivastava R, Che P, Howell SH (2007) Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic stress signaling. Plant J 51:897–909PubMedCrossRefGoogle Scholar
  23. Matos JL, Fiori CS, Silva-Filho MC, Moura DS (2008) A conserved dibasic site is essential for correct processing of the peptide hormone AtRALF1 in Arabidopsis thaliana. FEBS Lett 582:3343–3347PubMedCrossRefGoogle Scholar
  24. Matsubayashi Y (2011) Posttranslational modifications in peptide hormone. Plant Cell Physiol 52:5–13PubMedCrossRefGoogle Scholar
  25. Matsubayashi Y, Sakagami Y (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proc Natl Acad Sci USA 93:7623–7627PubMedCrossRefGoogle Scholar
  26. Matsubayashi Y, Sakagami Y (2006) Peptide hormones in plants. Annu Rev Plant Biol 57:649–674PubMedCrossRefGoogle Scholar
  27. Matsubayashi Y, Ogawa M, Morita A, Sakagami Y (2002) An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science 24:1470–1472CrossRefGoogle Scholar
  28. Matsuzaki Y, Ogawa-Ohnishi M, Mori A, Matsubayashi Y (2010) Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis. Science 329:1065–1067PubMedCrossRefGoogle Scholar
  29. Matthews DJ, Wells JA (1993) Substrate phage: selection of protease substrates by monovalent phage display. Science 260:1113–1117PubMedCrossRefGoogle Scholar
  30. McGurl B, Ryan CA (1992) The organization of the prosystemin gene. Plant Mol Biol 20:405–409PubMedCrossRefGoogle Scholar
  31. McGurl B, Pearce G, Orozco Cardenas M, Ryan CA (1992) Structure expression and antisense inhibition of the system in precursor gene. Science 255:1570–1573PubMedCrossRefGoogle Scholar
  32. Mitchum MG, Wang X, Davis EL (2008) Diverse and conserved roles of CLE peptides. Curr Opin Plant Biol 11:75–81PubMedCrossRefGoogle Scholar
  33. Mizuno K, Nakamura T, Ohshima T, Tanaka S, Matsuo H (1988) Yeast KEX2 gene encodes an endopeptidase homologous to subtilisin-like serine proteases. Biochem Biophys Res Commun 156:246–254PubMedCrossRefGoogle Scholar
  34. Moore KL (2003) The biology and enzymology of protein tyrosine O-sulfation. J Biol Chem 278:24243–24246PubMedCrossRefGoogle Scholar
  35. Myllyharju J (2003) Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis. Matrix Biol 22:15–24PubMedCrossRefGoogle Scholar
  36. Ni J, Clark SE (2006) Evidence for functional conservation, sufficiency, and proteolytic processing of the CLAVATA3 CLE domain. Plant Physiol 140:726–733PubMedCrossRefGoogle Scholar
  37. Ni J, Guo Y, Jin H, Hartsell J, Clark SE (2011) Characterization of a CLE processing activity. Plant Mol Biol 75:67–75PubMedCrossRefGoogle Scholar
  38. Ohyama K, Ogawa M, Matsubayashi Y (2008) Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS-based structure analysis. Plant J 55:152–160PubMedCrossRefGoogle Scholar
  39. Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y (2009) A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol 5:578–580PubMedCrossRefGoogle Scholar
  40. Olsen AN, Mundy J, Skriver K (2002) Peptomics, identification of novel cationic Arabidopsis peptides with conserved sequence motifs. In Silico Biol 2:441–451PubMedGoogle Scholar
  41. Orci L, Ravazzola M, Storch MJ, Anderson RGW, Vassalli JD, Perrelet A (1987) Proteolytic maturation of insulin is a post-Golgi event which occurs in acidifying clathrin-coated secretory vesicles. Cell 49:865–868PubMedCrossRefGoogle Scholar
  42. Pearce G, Ryan CA (2003) Systemic signaling in tomato plants for defense against herbivores. J Biol Chem 278:30044–30050PubMedCrossRefGoogle Scholar
  43. Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induce wound-inducible inhibitor proteins. Science 253:895–898PubMedCrossRefGoogle Scholar
  44. Pearce G, Moura DS, Stratmann J, Ryan CA (2001a) Production of multiple plant hormones from a single polyprotein precursor. Nature 411:817–820PubMedCrossRefGoogle Scholar
  45. Pearce G, Moura DS, Stratmann J, Ryan CA Jr (2001b) RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proc Natl Acad Sci USA 98:12843–12847PubMedCrossRefGoogle Scholar
  46. Pearce G, Yamaguchi Y, Barona G, Ryan CA (2010) A subtilisin-like protein from soybean contains an embedded, cryptic signal that activates defense related genes. Proc Natl Acad Sci USA 107:14921–14925PubMedCrossRefGoogle Scholar
  47. Rautengarten C, Steinhauser D, Büssis D, Stintzi A, Schaller A, Kopka J, Altmann T (2005) Inferring hypotheses on functional relationships of genes: analysis of the Arabidopsis thaliana subtilase gene family. PLoS Comput Biol 1:e40PubMedCrossRefGoogle Scholar
  48. Ryan CA, Pearce G, Scheer J, Moura DS (2002) Polypeptide hormones. Plant Cell 14:S251–S264PubMedGoogle Scholar
  49. Schnabel E, Mains RE, Farquhar MG (1989) Proteolytic processing of pro-ACTH/endorphin begins in the Golgi complex of pituitary corticotropes and AtT-20 cells. Mol Endocrinol 3:1223–1235PubMedCrossRefGoogle Scholar
  50. Shinohara H, Matsubayashi Y (2010) Arabinosylated glycopeptide hormones: new insights into CLAVATA3 structure. Curr Opin Plant Biol 13:515–551PubMedCrossRefGoogle Scholar
  51. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317PubMedCrossRefGoogle Scholar
  52. Srivastava R, Liu JX, Howell SH (2008) Proteolytic processing of a precursor protein for a growth-promoting peptide by a subtilisin serine protease in Arabidopsis. Plant J 56:219–227PubMedCrossRefGoogle Scholar
  53. Srivastava R, Liu JX, Guo H, Yin Y, Howell SH (2009) Regulation and processing of a plant peptide hormone, AtRALF23, in Arabidopsis. Plant J 59:930–939PubMedCrossRefGoogle Scholar
  54. Steiner DF (1998) The proprotein convertases. Curr Opin Chem Biol 2:31–39PubMedCrossRefGoogle Scholar
  55. Stenvik GE, Tandstad NM, Guo Y, Shi CL, Kristiansen W, Holmgren A, Clark SE, Aalen RB, Butenko MA (2008) The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in Arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2. Plant Cell 20:1805–1817PubMedCrossRefGoogle Scholar
  56. Sugano SS, Shimada T, Imai Y, Okawa K, Tamai A, Mori M, Hara-Nishimura I (2010) Stomagen positively regulates stomatal density in Arabidopsis. Nature 463:241–244PubMedCrossRefGoogle Scholar
  57. Takayama S, Shiba H, Iwano M, Shimosato H, Che FS, Kai N, Watanabe M, Suzuki G, Hinata K, Isogai A (2000) The pollen determinant of self-incompatibility in Brassica campestris. Proc Natl Acad Sci USA 97:1920–1925PubMedCrossRefGoogle Scholar
  58. Takayama S, Shimosato H, Shiba H, Funato M, Che FS, Watanabe M, Iwano M, Isogai A (2001) Direct ligand-receptor complex interaction controls Brassica self-incompatibility. Nature 413:534–538PubMedCrossRefGoogle Scholar
  59. Tian S, Jianhua W (2010) Comparative study of the binding pockets of mammalian proprotein convertases and its implications for the design of specific small molecule inhibitors. Int J Biol Sci 6:89–95PubMedCrossRefGoogle Scholar
  60. Tooze J, Hollinshead M, Frank R, Burke B (1987) An antibody specific for an endoproteolytic cleavage site provides evidence that pro-opiomelanocortin is packaged into secretory granules in AtT20 cells before its cleavage. J Cell Biol 105:155–162PubMedCrossRefGoogle Scholar
  61. Turk BE, Cantley LC (2003) Peptide libraries: at the crossroads of proteomics and bioinformatics. Curr Opin Chem Biol 7:84–90PubMedCrossRefGoogle Scholar
  62. Vlot AC, Klessig DF, Park SW (2008) Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol 11:436–442PubMedCrossRefGoogle Scholar
  63. Wheeler JI, Irving HR (2010) Evolutionary advantages of secreted peptide signaling molecules in plants. Funct Plant Biol 37:382–394CrossRefGoogle Scholar
  64. Wickner RB (1974) Chromosomal and nonchromosomal mutations affecting the “killer character” of Saccharomyces cerevisiae. Genetics 76:423–432PubMedGoogle Scholar
  65. Wu J, Kurten EL, Monshausen G, Hummel GM, Gilroy S, Baldwin IT (2007) NaRALF, a peptide signal essential for the regulation of root hair tip apoplastic pH in Nicotiana attenuata, is required for root hair development and plant growth in native soils. Plant J 52:877–890PubMedCrossRefGoogle Scholar
  66. Xu H, Shields D (1993) Prohormone processing in the trans-Golgi network: endoproteolytic cleavage of prosomatostatin and formation of nascent secretory vesicles in permeabilized cells. J Cell Biol 122:1169–1184PubMedCrossRefGoogle Scholar
  67. Zhou A, Martin S, Lipkind G, LaMendola J, Steiner DF (1998) Regulatory roles of the P domain of the subtilisin-like prohormone convertases. J Biol Chem 273:11107–11114PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Plant Sciences InstituteIowa State UniversityAmesUSA

Personalised recommendations