Advertisement

Peptides and the Regulation of Plant Homeostasis

  • Chris Gehring
  • Helen R. Irving
Chapter
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 16)

Abstract

Homeostasis defines the property of living organisms to keep a stable internal environment despite considerable external fluctuations, and this process is of considerable importance to plants as they are trapped unmoving in their changing surroundings. In addition to plant hormones, signaling peptides also have role(s) in maintaining plant homeostasis. Plant natriuretic peptides (PNPs) modulate ion channels and water uptake and have been implicated as compounds important in maintaining homeostasis. PNP and molecular mimics produced by pathogens modulate photosynthesis and the chloroplast proteome, thus indicating that PNP has widespread effects on homeostasis and could be considered a prototype homeostatic peptide. We propose that other peptides such as phytosulfokines (PSKs) and rapid alkalinization factors (RALFs) that have recognized roles in development and defense also have functions in plant homeostasis.

Keywords

Guanylate Cyclase Tracheary Element Leaf Mesophyll Cell Messenger cGMP Ancient Horizontal Gene Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Australian Research Council’s Discovery project funding scheme (DP0557561, DP0878194).

References

  1. Baena-Gonzalez E, Sheen J (2008) Convergent energy and stress signaling. Trends Plant Sci 13:474–482PubMedCrossRefGoogle Scholar
  2. Bastian R, Dawe A, Meier S, Ludidi N, Bajic VB, Gehring C (2010) Gibberelic acid and cGMP-dependent transcriptional regulation in Arabidopsis thaliana. Plant Signal Behav 5:224–232PubMedCrossRefGoogle Scholar
  3. Billington T, Pharmawati M, Gehring CA (1997) Isolation and immunoaffinity purification of biologically active plant natriuretic peptide. Biochem Biophys Res Commun 235:722–725PubMedCrossRefGoogle Scholar
  4. Blatt MR (1992) K+ channels of stomatal guard cells – characteristics of the inward rectifier and its control by pH. J Gen Physiol 99:615–644PubMedCrossRefGoogle Scholar
  5. Blatt MR, Armstrong F (1993) K+ channels of stomatal guard cells – abscisic-acid-evoked control of the outward rectifier mediated by cytoplasmic pH. Planta 191:330–341CrossRefGoogle Scholar
  6. Boudart G, Jamet E, Rossignol M, Lafitte C, Borderies G, Jauneau A, Esquerre-Tugaye M, Pont-Lezica R (2004) Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes: identification by mass spectrometry and bioinformatics. Proteomics 5:212–221CrossRefGoogle Scholar
  7. Bowler C, Neuhaus G, Yamagata H, Chua N-H (1994) Cyclic GMP and calcium mediate phytochrome phototransduction. Cell 77:73–81PubMedCrossRefGoogle Scholar
  8. Chen CC, England S, Akopian AN, Wood JN (1998) A sensory neuron-specific, proton-gated ion channel. Proc Natl Acad Sci USA 95:10240–10245PubMedCrossRefGoogle Scholar
  9. Donaldson L, Ludidi N, Knight MR, Gehring C, Denby K (2004) Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels. FEBS Lett 569:317–320PubMedCrossRefGoogle Scholar
  10. Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257PubMedCrossRefGoogle Scholar
  11. Gamble RL, Coonfield ML, Schaller GE (1998) Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proc Natl Acad Sci USA 95:7825–7829PubMedCrossRefGoogle Scholar
  12. Garavaglia BS, Thomas L, Zimaro T, Gottig N, Daurelio LD, Ndimba B, Orellano EG, Ottado J, Gehring C (2010a) A plant natriuretic peptide-like molecule of the pathogen Xanthomonas axonopodis pv. citri causes rapid changes in the proteome of its citrus host. BMC Plant Biol 10:51PubMedCrossRefGoogle Scholar
  13. Garavaglia BS, Thomas L, Gottig N, Dunger G, Garofalo CG, Daurelio LD, Ndimba B, Orellano EG, Gehring C, Ottado J (2010b) A eukaryotic-acquired gene by a biotrophic phytopathogen allows prolonged survival on the host by counteracting the shut-down of plant photosynthesis. PLoS One 5:e8950PubMedCrossRefGoogle Scholar
  14. Gehring CA, Irving HR (2003) Natriuretic peptides – a class of heterologous molecules in plants. Int J Biochem Cell Biol 35:1318–1322PubMedCrossRefGoogle Scholar
  15. Gehring CA, Khalid KM, Toop T, Donald JA (1996) Rat natriuretic peptide binds specifically to plant membranes and induces stomatal opening. Biochem Biophys Res Commun 228:739–744PubMedCrossRefGoogle Scholar
  16. Germain H, Chevalier E, Caron S, Matton DP (2005) Characterization of five RALF-like genes from Solanum chacoense provides support for a developmental role in plants. Planta 220:447–454PubMedCrossRefGoogle Scholar
  17. Gottig N, Garavaglia BS, Daurelio LD, Valentine A, Gehring C, Orellano EG, Ottado J (2008) Xanthomonas axonopodis pv. citri uses a plant natriuretic peptide-like protein to modify host homeostasis. Proc Natl Acad Sci USA 105:18631–18636PubMedCrossRefGoogle Scholar
  18. Gottig N, Garavaglia BS, Daurelio LD, Valentine A, Gehring C, Orellano EG, Ottado J (2009) Modulating host homeostasis as a strategy in the plant-pathogen arms race. Commun Integr Biol 2:89–90PubMedGoogle Scholar
  19. Hanai H, Nakayama D, Yang H, Matsubayashi Y, Hirota Y, Sakagami Y (2000) Existence of a plant tyrosylprotein sulfotransferase: novel plant enzyme catalyzing tyrosine O-sulfation of preprophytosulfokine variants in vitro. FEBS Lett 470:97–101PubMedCrossRefGoogle Scholar
  20. Haruta M, Constabel CP (2003) Rapid alkalinization factors in poplar cell cultures. Peptide isolation, cDNA cloning, and differential expression in leaves and methyl jasmonate-treated cells. Plant Physiol 131:814–823PubMedCrossRefGoogle Scholar
  21. Haruta M, Monshausen G, Gilroy S, Sussman MR (2008) A cytoplasmic Ca2+ functional assay for identifying and purifying endogenous cell signaling peptides in Arabidopsis seedlings: identification of AtRALF1 peptide. Biochemistry 47:6311–6321PubMedCrossRefGoogle Scholar
  22. Ilan N, Schwartz A, Moran N (1994) External pH effects on the depolarization-activated K-channels in guard cell protoplasts of Vicia faba. J Gen Physiol 103:807–831PubMedCrossRefGoogle Scholar
  23. Ito Y, Nakanoyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842–845PubMedCrossRefGoogle Scholar
  24. Kaplan B, Sherman T, Fromm H (2007) Cyclic nucleotide-gated channels in plants. FEBS Lett 581:2237–2246PubMedCrossRefGoogle Scholar
  25. Kende H, Zeevaart J (1997) The five “classical” plant hormones. Plant Cell 9:1197–1210PubMedCrossRefGoogle Scholar
  26. Kende H, Bradford K, Brummell D, Cho HT, Cosgrove D, Fleming A, Gehring C, Lee Y, McQueen-Mason S, Rose J, Voesenek LA (2004) Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol Biol 55:311–314PubMedCrossRefGoogle Scholar
  27. Kuhn M (2005) Cardiac and intestinal natriuretic peptides: insights from genetically modified mice. Peptides 26:1078–1085PubMedCrossRefGoogle Scholar
  28. Kutschmar A, Rzewuski G, Stuhrwohldt N, Beemster GT, Inze D, Sauter M (2009) PSK-alpha promotes root growth in Arabidopsis. New Phytol 181:820–831PubMedCrossRefGoogle Scholar
  29. Kwezi L, Ruzvidzo O, Wheeler JI, Govender K, Iacuone S, Thompson PE, Gehring C, Irving HR (2011) The phytosulfokine (PSK) receptor is capable of guanylate cyclase activity and enabling cyclic GMP-dependent signalling in plants. J Biol Chem 286:22580–22588PubMedCrossRefGoogle Scholar
  30. Leng Q, Mercier RW, Yao W, Berkowitz GA (1999) Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiol 121:753–761PubMedCrossRefGoogle Scholar
  31. Lorbiecke R, Sauter M (2002) Comparative analysis of PSK peptide growth factor precursor homologs. Plant Sci 163:321–332CrossRefGoogle Scholar
  32. Ludidi NN, Heazlewood JL, Seoighe C, Irving HR, Gehring CA (2002) Expansin-like molecules: novel functions derived from common domains. J Mol Evol 54:587–594PubMedCrossRefGoogle Scholar
  33. Ludidi N, Morse M, Sayed M, Wherrett T, Shabala S, Gehring C (2004) A recombinant plant natriuretic peptide causes rapid and spatially differentiated K+, Na+ and H+ flux changes in Arabidopsis thaliana roots. Plant Cell Physiol 45:1093–1098PubMedCrossRefGoogle Scholar
  34. Ma W, Yoshioka K, Gehring C, Berkowitz G (2010) The function of cyclic nucleotide-gated channels in biotic stress. In: Demidchik V, Maathuis F (eds) Ion channels and plant stress responses, signaling and communication in plants. Springer, Berlin, pp 159–174CrossRefGoogle Scholar
  35. Maathuis FJ (2006) cGMP modulates gene transcription and cation transport in Arabidopsis roots. Plant J 45:700–711PubMedCrossRefGoogle Scholar
  36. Maryani MM, Shabala SN, Gehring CA (2000) Plant natriuretic peptide immunoreactants modulate plasma-membrane H(+) gradients in Solanum tuberosum L. leaf tissue vesicles. Arch Biochem Biophys 376:456–458PubMedCrossRefGoogle Scholar
  37. Maryani MM, Bradley G, Cahill DM, Gehring CA (2001) Natriuretic peptides and immunoreactants modify osmoticum-dependent volume changes in Solanum tuberosum L. mesophyll cell protoplasts. Plant Sci 161:443–452CrossRefGoogle Scholar
  38. Matsubayashi Y, Sakagami Y (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proc Natl Acad Sci USA 93:7623–7627PubMedCrossRefGoogle Scholar
  39. Matsubayashi Y, Takagi L, Omura N, Morita A, Sakagami Y (1999) The endogenous sulfated pentapeptide phytosulfokine-alpha stimulates tracheary element differentiation of isolated mesophyll cells of zinnia. Plant Physiol 120:1043–1048PubMedCrossRefGoogle Scholar
  40. Matsubayashi Y, Ogawa M, Morita A, Sakagami Y (2002) An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science 296:1470–1472PubMedCrossRefGoogle Scholar
  41. Matsubayashi Y, Ogawa M, Kihara H, Niwa M, Sakagami Y (2006) Disruption and overexpression of Arabidopsis phytosulfokine receptor gene affects cellular longevity and potential for growth. Plant Physiol 142:45–53PubMedCrossRefGoogle Scholar
  42. McGurl B, Pearce G, Ryan CA (1994) Polypeptide signalling for plant defence genes. Biochem Soc Symp 60:149–154PubMedGoogle Scholar
  43. Meier S, Bastian R, Donaldson L, Murray S, Bajic V, Gehring C (2008) Co-expression and promoter content analyses assign a role in biotic and abiotic stress responses to plant natriuretic peptides. BMC Plant Biol 8:24PubMedCrossRefGoogle Scholar
  44. Meier S, Madeo L, Ederli L, Donaldson L, Pasqualini S, Gehring C (2009) Deciphering cGMP signatures and cGMP-dependent pathways in plant defence. Plant Signal Behav 4:307–309PubMedCrossRefGoogle Scholar
  45. Meier S, Ruzvidzo O, Morse M, Donaldson L, Kwezi L, Gehring C (2010) The Arabidopsis wall associated kinase-like 10 gene encodes a functional guanylyl cyclase and is co-expressed with pathogen defense related genes. PLoS One 5:e8904PubMedCrossRefGoogle Scholar
  46. Mingossi FB, Matos JL, Rizzato AP, Medeiros AH, Falco MC, Silva-Filho MC, Moura DS (2010) SacRALF1, a peptide signal from the grass sugarcane (Saccharum spp.), is potentially involved in the regulation of tissue expansion. Plant Mol Biol 73:271–281PubMedCrossRefGoogle Scholar
  47. Morse M, Pironcheva G, Gehring C (2004) AtPNP-A is a systemically mobile natriuretic peptide immunoanalogue with a role in Arabidopsis thaliana cell volume regulation. FEBS Lett 556:99–103PubMedCrossRefGoogle Scholar
  48. Motose H, Iwamoto K, Endo S, Demura T, Sakagami Y, Matsubayashi Y, Moore KL, Fukuda H (2009) Involvement of phytosulfokine in the attenuation of stress response during the transdifferentiation of Zinnia mesophyll cells into tracheary elements. Plant Physiol 150:437–447PubMedCrossRefGoogle Scholar
  49. Navarro B, Kirichok Y, Clapham DE (2007) KSper, a pH-sensitive K+ current that controls sperm membrane potential. Proc Natl Acad Sci USA 104:7688–7692PubMedCrossRefGoogle Scholar
  50. Nembaware V, Seoighe C, Sayed M, Gehring C (2004) A plant natriuretic peptide-like gene in the bacterial pathogen Xanthomonas axonopodis may induce hyper-hydration in the plant host: a hypothesis of molecular mimicry. BMC Evol Biol 4:10PubMedCrossRefGoogle Scholar
  51. Pandey S, Wang R-S, Wilson L, Li S, Zhao Z, Gookin TE, Assmann SM, Albert R (2010) Boolean modeling of transcriptome data reveals novel modes of heterotrimeric G-protein action. Mol Syst Biol 6:372PubMedCrossRefGoogle Scholar
  52. Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895–898PubMedCrossRefGoogle Scholar
  53. Pearce G, Moura DS, Stratmann J, Ryan CA Jr (2001) RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proc Natl Acad Sci USA 98:12843–12847PubMedCrossRefGoogle Scholar
  54. Pearce G, Munske G, Yamaguchi Y, Ryan CA (2010) Structure-activity studies of GmSubPep, a soybean peptide defense signal derived from an extracellular protease. Peptides 31:2159–2164PubMedCrossRefGoogle Scholar
  55. Peuke AD, Windt C, Van As H (2006) Effects of cold-girdling on flows in the transport phloem in Ricinus communis: is mass flow inhibited? Plant Cell Environ 29:15–25PubMedCrossRefGoogle Scholar
  56. Pharmawati M, Gehring CA, Irving HR (1998a) An immunoaffinity purified plant natriuretic peptide analogue modulates cGMP levels in the Zea mays root stele. Plant Sci 137:107–115CrossRefGoogle Scholar
  57. Pharmawati M, Billington T, Gehring CA (1998b) Stomatal guard cell responses to kinetin and natriuretic peptides are cGMP-dependent. Cell Mol Life Sci 54:272–276PubMedCrossRefGoogle Scholar
  58. Pharmawati M, Shabala SN, Newman IA, Gehring CA (1999) Natriuretic peptides and cGMP modulate K+, Na+, and H+ fluxes in Zea mays roots. Mol Cell Biol Res Commun 2:53–57PubMedCrossRefGoogle Scholar
  59. Pharmawati M, Maryani MM, Nikolakopoulos T, Gehring CA, Irving HR (2001) Cyclic GMP modulates stomatal opening induced by natriuretic peptides and immunoreactive analogues. Plant Physiol Biochem 39:385–394CrossRefGoogle Scholar
  60. Potter LR, Abbey-Hosch S, Dickey DM (2006) Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 27:47–72PubMedCrossRefGoogle Scholar
  61. Qi Z, Verma R, Gehring C, Yamaguchi Y, Zhao Y, Ryan CA, Berkowitz GA (2010) Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proc Natl Acad Sci USA 107:21193–21198PubMedCrossRefGoogle Scholar
  62. Rafudeen S, Gxaba G, Makgoke G, Bradley G, Pironcheva G, Raitt L, Irving H, Gehring C (2003) A role for plant natriuretic peptide immuno-analogues in NaCl- and drought-stress responses. Physiol Planta 119:554–562CrossRefGoogle Scholar
  63. Ruzvidzo O, Donaldson L, Valentine A, Gehring C (2011) The Arabidopsis thaliana natriuretic peptide AtPNP-A is a systemic regulator of leaf dark respiration and signals via the phloem. J Plant Physiol 168:1710–1714PubMedCrossRefGoogle Scholar
  64. Srivastava R, Liu JX, Howell SH (2008) Proteolytic processing of a precursor protein for a growth-promoting peptide by a subtilisin serine protease in Arabidopsis. Plant J 56:219–227PubMedCrossRefGoogle Scholar
  65. Srivastava R, Liu JX, Guo H, Yin Y, Howell SH (2009) Regulation and processing of a plant peptide hormone, AtRALF23, in Arabidopsis. Plant J 59:930–939PubMedCrossRefGoogle Scholar
  66. Suwastika I, Gehring C (1998) Natriuretic peptide hormones promote radial water movements from the xylem of Tradescantia shoots. Cell Mol Life Sci 54:1161–1167CrossRefGoogle Scholar
  67. Suwastika IN, Toop T, Irving HR, Gehring CA (2000) In situ and in vitro binding of natriuretic peptide hormones in Tradescantia multiflora. Plant Biol 2:1–3CrossRefGoogle Scholar
  68. Toop T, Donald JA (2004) Comparative aspects of natriuretic peptide physiology in non-mammalian vertebrates: a review. J Comp Physiol B 174:189–204PubMedCrossRefGoogle Scholar
  69. Vesely DL, Giordano AT (1991) Atrial natriuretic peptide hormonal system in plants. Biochem Biophys Res Commun 179:695–700PubMedCrossRefGoogle Scholar
  70. Vesely DL, Gower WR Jr, Giordano AT (1993) Atrial natriuretic peptides are present throughout the plant kingdom and enhance solute flow in plants. Am J Physiol 265:E465–E477PubMedGoogle Scholar
  71. Wang YH, Irving HR (2011) Developing a model of plant hormone interactions. Plant Signal Behav 6:494–500PubMedCrossRefGoogle Scholar
  72. Wang YH, Gehring C, Cahill DM, Irving HR (2007) Plant natriuretic peptide active site determination and effects on cGMP and cell volume regulation. Funct Plant Biol 34:645–653CrossRefGoogle Scholar
  73. Wang YH, Ahmar H, Irving HR (2010) Induction of apoptosis by plant natriuretic peptides in rat cardiomyoblasts. Peptides 31:1213–1218PubMedCrossRefGoogle Scholar
  74. Wang YH, Gehring C, Irving HR (2011a) Plant natriuretic peptides are apoplastic and paracrine stress response molecules. Plant Cell Physiol 52:837–850PubMedCrossRefGoogle Scholar
  75. Wang YH, Donaldson L, Gehring C, Irving HR (2011b) Plant natriuretic peptides: control of synthesis and systemic effects. Plant Signal Behav 6:1606–1608PubMedCrossRefGoogle Scholar
  76. Wu J, Kurten EL, Monshausen G, Hummel GM, Gilroy S, Baldwin IT (2007) NaRALF, a peptide signal essential for the regulation of root hair tip apoplastic pH in Nicotiana attenuata, is required for root hair development and plant growth in native soils. Plant J 52:877–890PubMedCrossRefGoogle Scholar
  77. Yang H, Matsubayashi Y, Nakamura K, Sakagami Y (1999) Oryza sativa PSK gene encodes a precursor of phytosulfokine-alpha, a sulfated peptide growth factor found in plants. Proc Natl Acad Sci USA 96:13560–13565PubMedCrossRefGoogle Scholar
  78. Yang H, Matsubayashi Y, Nakamura K, Sakagami Y (2001) Diversity of Arabidopsis genes encoding precursors for phytosulfokine, a peptide growth factor. Plant Physiol 127:842–851PubMedCrossRefGoogle Scholar
  79. Yu L, Moshelion M, Moran N (2001) Extracellular protons inhibit the activity of inward-rectifying potassium channels in the motor cells of Samanea saman pulvini. Plant Physiol 127:1310–1322PubMedCrossRefGoogle Scholar
  80. Zeng X-H, Yang C, Kim ST, Lingle CJ, Xia X-M (2011) Deletion of the Slo3 gene abolishes alkalization-activated K(+) current in mouse spermatozoa. Proc Natl Acad Sci USA 108:5879–5884PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Division of Chemistry, Life Science and Engineering4700 King Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
  2. 2.Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleAustralia

Personalised recommendations