Advertisement

Intensity Modulated Radiotherapy for Prostate Cancer

  • Olivier Chapet
  • Corina Udrescu
  • Ciprian Enachescu
Chapter

Abstract

External beam irradiation is a common and standard treatment for prostate cancer. Intensity modulated radiotherapyv (IMRT) is a technique of irradiation which allows to generate concave isodoses and then to reduce the dose delivered to organs at risk of toxicities. In prostate cancer, IMRT reduces the rates of acute and late rectal and urinary toxicities. Therefore, IMRT appears as an optimal technique to escalate the dose of irradiation without causing increased toxicities. It could make easier the development of new approaches of irradiation of prostate cancers such as hypofractionated irradiation or stereotactic irradiation. The preservation of healthy tissues in IMRT could be improved by combination with the progress in imaging (fusion CT/MRI) and a systematic association with a daily repositioning using the image-guided radiotherapy (IGRT).

Keywords

Prostate Cancer Biochemical Recurrence Rectal Toxicity Hypofractionated Radiotherapy Biological Equivalent Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Acher P, Puttagunta S, Rhode K et al (2010) An analysis of intraoperative versus post-operative dosimetry with CT, CT-MRI fusion and XMR for the evaluation of permanent prostate brachytherapy implants. Radiother Oncol 96:166–171PubMedCrossRefGoogle Scholar
  2. Akimoto T, Muramatsu H, Takahashi M et al (2004) Rectal bleeding after hypofractionated radiotherapy for prostate cancer: correlation between clinical and dosimetric parameters and the incidence of grade 2 or worse rectal bleeding. Int J Radiat Oncol Biol Phys 60(4):1033–1039PubMedCrossRefGoogle Scholar
  3. Alicikus ZA, Yamada Y, Zhang Z et al (2011) Ten-year outcomes of high-dose, intensity-modulated radiotherapy for localized prostate cancer. Cancer 117(7):1429–1437PubMedCrossRefGoogle Scholar
  4. Arcangeli G, Saracino B, Gomellini S et al (2010) A prospective phase III randomized trial of hypofractionation versus conventional fractionation in patients with high-risk prostate cancer. Int J Radiat Oncol Biol Phys 78(1):11–18PubMedCrossRefGoogle Scholar
  5. Ashman JB, Zelefsky MJ, Hunt MS et al (2005) Whole pelvic radiotherapy for prostate cancer using 3D conformal and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 63(3):765–771PubMedCrossRefGoogle Scholar
  6. Azria D, Aillieres N, Llacer Moscardo C et al (2009) Conformal intensity modulated radiation therapy for localized prostate cancer: toward a new standard. Cancer Radiother 13:409–415PubMedCrossRefGoogle Scholar
  7. Balter JM, Sandler HM, Lam K et al (1995a) Measurement of prostate movement over the course of routine radiotherapy using implanted markers. Int J Radiat Oncol Biol Phys 31:113–118PubMedCrossRefGoogle Scholar
  8. Balter JM, Lam KL, Sandler HM et al (1995b) Automated localization of the prostate at the time of treatment using implanted radiopaque markers: technical feasibility. Int J Radiat Oncol Biol Phys 33:1281–1286PubMedCrossRefGoogle Scholar
  9. Barney BM, Lee RJ, Handrahan D, Welsh KT et al (2011) Image-guided radiotherapy (IGRT) for prostate cancer comparing kV imaging of fiducial markers with cone-beam computed tomography (CBCT). Int J Radiat Oncol Biol Phys 80:301–305PubMedCrossRefGoogle Scholar
  10. Beckendorf V, Guerif S, Le Prisé E et al (2011) 70 Gy versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial. Int J Radiat Oncol Biol Phys 80(4):1056–1063PubMedCrossRefGoogle Scholar
  11. Boda-Heggemann J, Kohler FM, Kupper B et al (2008) Accuracy of ultrasound- based (BAT) prostate-repositioning: a three dimensional on-line fiducial-based assessment with cone-beam computed tomography. Int J Radiat Oncol Biol Phys 70:1247–1255PubMedCrossRefGoogle Scholar
  12. Boike TP, Lotan Y, Cho LC et al (2011) Phase I dose-escalation study of stereotactic body radiation therapy for low- and intermediate-risk prostate cancer. J Clin Oncol 29(15):2020–2026PubMedCrossRefGoogle Scholar
  13. Brenner DJ, Hall EJ (1999) Fractionation and protraction for radiotherapy of prostate carcinoma. Int J Radiat Oncol Biol Phys 43:1095–1101PubMedCrossRefGoogle Scholar
  14. Brenner DJ, Martinez AA, Edmundson GK (2002) Direct evidence that prostate tumors show high sensitivity to fractionation (low alpha/beta ratio), similar to late-responding normal tissue. Int J Radiat Oncol Biol Phys 52:6–13PubMedCrossRefGoogle Scholar
  15. Cahlon O, Zelefsky MJ, Shippy A et al (2008) Ultra-high dose (86.4 Gy) IMRT for localized prostate cancer: toxicity and biochemical outcomes. Int J Radiat Oncol Biol Phys 71(2):330–337PubMedCrossRefGoogle Scholar
  16. Carlson DJ, Stewart RD, Li XA et al (2004) Comparison of in vitro and in vivo α/β ratios for prostate cancer. Phys Med Biol 49:4477–4491PubMedCrossRefGoogle Scholar
  17. Chen L, Price RA, Wang L et al (2004) MRI-based treatment planning for radiotherapy: dosimetric verification for prostate IMRT. Int J Radiat Oncol Biol Phys 60:636–647PubMedCrossRefGoogle Scholar
  18. Clancy PE, Schuller BW, Sroczinski LM, Hirsch AE (2009) Assessment of patient setup error in prostate radiation therapy using fiducial-based image guided radiation therapy with kV onboard imaging and conebeam CT [abstract]. Int J Radiat Oncol Biol Phys 75(suppl 1):S579–S580CrossRefGoogle Scholar
  19. Coote JH, Wylie JP, Cowan RA et al (2009) Hypofractionated intensity-modulated radiotherapy for carcinoma of the prostate: analysis of toxicity. Int J Radiat Oncol Biol Phys 74(4):1121–1127PubMedCrossRefGoogle Scholar
  20. de Crevoisier R, Tucker SL, Dong L et al (2005) Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 62:965–973PubMedCrossRefGoogle Scholar
  21. Dearnaley DP, Sydes MR, Graham JD et al (2007) Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: first results from the MRC RT01 randomised controlled trial. Lancet Oncol 8(6):475–487PubMedCrossRefGoogle Scholar
  22. Faria SL, Souhami L, Joshua B et al (2008) Reporting late rectal toxicity in prostate cancer patients treated with curative radiation treatment. Int J Radiat Oncol Biol Phys 72(3):777–781PubMedCrossRefGoogle Scholar
  23. Franiel T, Ludemann L, Taupitz M et al (2009) MRI before and after external beam intensity-modulated radiotherapy of patients with prostate cancer: the feasibility of monitoring of radiation-induced tissue changes using dynamic contrast-enhanced inversion-prepared dual-contrast gradient echo sequence. Radiother Oncol 93:241–245PubMedCrossRefGoogle Scholar
  24. Freedman GM, Price RA Jr, Mah D et al (2001) Routine use of MRI and CT simulation for treatment planning of intensity modulated radiation therapy (IMRT) in prostate cancer. Int J Radiat Oncol Biol Phys 51:301CrossRefGoogle Scholar
  25. Friedland JL, Freeman DE, Masterson-McGary ME et al (2009) Stereotactic body radiotherapy: an emerging treatment approach for localized prostate cancer. Technol Cancer Res Treat 8(5):387–392PubMedGoogle Scholar
  26. Gao Z, Wilkins D, Eapen L et al (2007) A study of prostate delineation referenced against a gold standard created from the visible human data. Radiother Oncol 85:239–246PubMedCrossRefGoogle Scholar
  27. Ghadjar P, Gwerder N, Manser P et al (2010) High-dose (80 Gy) intensity modulated radiation therapy with daily image-guidance as primary treatment for localized prostate cancer. Strahlenther Onkol 186(12):687–692PubMedCrossRefGoogle Scholar
  28. Groenendaal G, Moman MR, Korporaal JG et al (2010a) Validation of functional imaging with pathology for tumor delineation in the prostate. Radiother Oncol 94:145–150PubMedCrossRefGoogle Scholar
  29. Groenendaal G, van den Berg Cornelis AT, Korporaal JG et al (2010b) Simultaneous MRI diffusion and perfusion imaging for tumor delineation in prostate cancer patients. Radiother Oncol 95:185–190PubMedCrossRefGoogle Scholar
  30. Haverkort MAD, van der Kamer JB, Pieters BR et al (2011) Position verification for the prostate: effect on rectal wall dose. Int J Radiat Oncol Biol Phys 80:462–468PubMedCrossRefGoogle Scholar
  31. Heemsbergen WD, Hoogeman MS, Witte MG et al (2007) Increased risk of biochemical and clinical failure for prostate patients with a large rectum at radiotherapy planning: results from the Dutch trial of 68 GY versus 78 Gy. Int J Radiat Oncol Biol Phys 67:1418–1424PubMedCrossRefGoogle Scholar
  32. Intensity Modulated Radiation Therapy Collaborative Working Group (2001) Intensity-modulated radiotherapy: current status and issues of interest. Int J Radiat Oncol Biol Phys 51(4):880–914CrossRefGoogle Scholar
  33. Jackson ASN, Reinsberg SA, Moore EM et al (2004) Distortion-corrected T2-weighted MRI: a comparison with CT for prostate contouring in radiotherapy planning. Radiother Oncol 73:S457Google Scholar
  34. Junius S, Haustermans K, Bussels B et al (2007) Hypofractionated intensity modulated irradiation for localized prostate cancer, results from a phase I/II feasibility study. Radiat Oncol 2:29PubMedCrossRefGoogle Scholar
  35. Kajihara H, Hayashida Y, Murakami R et al (2009) Usefulness of diffusion-weighted imaging in the localization of prostate cancer. Int J Radiat Oncol Biol Phys 74:399–403PubMedCrossRefGoogle Scholar
  36. Katz AJ, Santoro M, Ashley R et al (2010) Stereotactic body radiotherapy for organ-confined prostate cancer. BMC Urol 10:1PubMedCrossRefGoogle Scholar
  37. King CR, Brooks JD, Gill H et al (2009) Stereotactic body radiotherapy for localized prostate cancer: interim results of a prospective phase II clinical trial. Int J Radiat Oncol Biol Phys 73(4):1043–1048PubMedCrossRefGoogle Scholar
  38. King CR, Brooks JD, Gill H et al (2012) Long-term outcomes from a prospective trial of stereotactic body radiotherapy for low-risk prostate cancer. Int J Radiat Oncol Biol Phys 82(2):877–882Google Scholar
  39. Kitamura K, Shirato H, Seppenwoolde Y et al (2002) Three-dimensional intrafractional movement of prostate measured during real-time tumor-tracking radiotherapy in supine and prone treatment positions. Int J Radiat Oncol Biol Phys 53:1117–1123PubMedCrossRefGoogle Scholar
  40. Kuban DA, Tucker SL, Dong L et al (2008) Long-term results of the M. D. Anderson randomized dose-­escalation trial for prostate cancer. Int J Radiat Oncol Biol Phys 70(1):67–74PubMedCrossRefGoogle Scholar
  41. Kupelian PA, Reddy CA, Carlson TP et al (2002) Preliminary observations on biochemical relapse-free survival rates after short-course intensity-modulated radiotherapy (70 Gy at 2.5 Gy/fraction) for localized prostate cancer. Int J Radiat Oncol Biol Phys 53(4):904–912PubMedCrossRefGoogle Scholar
  42. Kupelian PA, Willoughby TR, Meeks SL et al (2005) Intraprostatic fiducials for localization of the prostate gland: monitoring intermarker distances during radiation therapy to test for marker stability. Int J Radiat Oncol Biol Phys 62:1291–1296PubMedCrossRefGoogle Scholar
  43. Kupelian PA, Willoughby TR, Reddy CA et al (2007) Hypofractionated intensity-modulated radiotherapy (70 Gy at 2.5 Gy per fraction) for localized prostate cancer: Cleveland clinic experience. Int J Radiat Oncol Biol Phys 68(5):1424–1430PubMedCrossRefGoogle Scholar
  44. Kupelian PA, Willoughby TR, Reddy CA et al (2008) Impact of image-guided on outcomes after external beam radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 70:1146–1150PubMedCrossRefGoogle Scholar
  45. Langen KM, Willoughby TR, Meeks SL et al (2008) Observations on real-time prostate gland motion using electromagnetic tracking. Int J Radiat Oncol Biol Phys 71:1084–1090PubMedCrossRefGoogle Scholar
  46. Leborgne F, Fowler J (2009) Late outcomes following hypofractionated conformal radiotherapy vs standard fractionation for localized prostate cancer: a nonrandomized contemporary comparison. Int J Radiat Oncol Biol Phys 74:1441–1446PubMedCrossRefGoogle Scholar
  47. Leborgne F, Fowler J, Leborgne JH, Mezzera J. (2012) Later outcomes and alpha/beta estimate from hypofractionated conformal three-dimensional radiotherapy versus standard fractionation for localized prostate cancer. Int J Radiat Oncol Biol Phys 82(3):1200–1207Google Scholar
  48. Lips I, Dehnad H, Kruger AB et al (2007) Health-related quality of life in patients with locally advanced prostate cancer after 76 Gy intensity-modulated radiotherapy vs. 70 Gy conformal radiotherapy in a prospective and longitudinal study. Int J Radiat Oncol Biol Phys 69(3):656–661PubMedCrossRefGoogle Scholar
  49. Lock M, Best L, Wong E et al (2011) A phase II trial of Arc-based hypofractionated intensity-modulated radiotherapy in localized prostate cancer. Int J Radiat Oncol Biol Phys 80(5):1306–1315PubMedCrossRefGoogle Scholar
  50. Madsen BL, Hsi RA, Pham HT et al (2007) Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: first clinical trial results. Int J Radiat Oncol Biol Phys 67(4):1099–1105PubMedCrossRefGoogle Scholar
  51. Martin JM, Rosewall T, Bayley A et al (2007) Phase II trial of hypofractionated image-guided intensity-modulated radiotherapy for localized prostate adenocarcinoma. Int J Radiat Oncol Biol Phys 69(4):1084–1089PubMedCrossRefGoogle Scholar
  52. Martin JM, Frantzis J, Eade T, Chung P (2010) Clinician’s guide to prostate IMRT plan assessment and optimisation. J Med Imaging Radiat Oncol 54(6):569–575PubMedCrossRefGoogle Scholar
  53. McLaughlin PW, Evans C, Feng M, Narayana V (2010) Radiographic and anatomic basis for prostate contouring errors and methods to improve prostate contouring accuracy. Int J Radiat Oncol Biol Phys 76:369–378PubMedCrossRefGoogle Scholar
  54. Meirovitz A, Troyer S, Evans V et al (2003) Rectum and prostate separation by MRI vs CT in external beam and post-implant patients [abstract]. Int J Radiat Oncol Biol Phys 57(Suppl):S334CrossRefGoogle Scholar
  55. Milosevic M, Voruganti S, Blend R et al (1998) Magnetic resonance imaging (MRI) for localization of the prostatic apex: comparison to computed tomography (CT) and urethrography. Radiother Oncol 47:277–284PubMedCrossRefGoogle Scholar
  56. Miralbell R, Roberts SA, Zubizarreta E et al (2012) Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven international institutional datasets: α/β  =  1.4 (0.9–2.2) Gy. Int J Radiat Oncol Biol Phys 82:e17–e24PubMedCrossRefGoogle Scholar
  57. Mitchell DM, Perry L, Smith S et al (2009) Assessing the effect of a contouring protocol on postprostatectomy radiotherapy clinical target volumes and interphysician variation. Int J Radiat Oncol Biol Phys 75:990–993PubMedCrossRefGoogle Scholar
  58. Neicu T, Chetty IJ, Pradhan D et al (2009) A comparative study for daily localization with 3D ultrasound, cone beam CT, and implanted prostate fiducial markers for patients undergoing IGRT for prostate cancer. Int J Radiat Oncol Biol Phys 75(Suppl):S606CrossRefGoogle Scholar
  59. Owen R, Foroudi F, Kron T et al (2010) A comparison of in-room computerized tomography options for detection of fiducial markers in prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 77:1248–1256PubMedCrossRefGoogle Scholar
  60. Parker CC, Damyanovich A, Haycocks T et al (2003) Magnetic resonance imaging in the radiation treatment planning of localized prostate cancer using intra-prostatic fiducial markers for computed tomography co-registration. Radiother Oncol 66:217–224PubMedCrossRefGoogle Scholar
  61. Peeters ST, Heemsbergen WD, Koper PC et al (2006) Dose–response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol 24(13):1990–1996PubMedCrossRefGoogle Scholar
  62. Perna L, Fiorino C, Cozzarini C et al (2009) Sparing the penile bulb in the radical irradiation of clinically localised prostate carcinoma: a comparison between MRI and CT prostatic apex definition in 3DCRT, Linac-IMRT and helical tomotherapy. Radiother Oncol 93:57–63PubMedCrossRefGoogle Scholar
  63. Petersch B, Bogner J, Fransson A et al (2004) Effects of geometric distortion in 0.2 T MRI on radiotherapy treatment planning of prostate cancer. Radiother Oncol 71:55–64PubMedCrossRefGoogle Scholar
  64. Pinkawa M, Siluschek J, Gagel B et al (2006) Influence of the initial rectal distension on posterior margins in primary and postoperative radiotherapy for prostate cancer. Radiother Oncol 8:284–290CrossRefGoogle Scholar
  65. Pouliot J, Morin O, Aubin M et al (2006) Mégavoltage cone-beam CT: récents développements et applications cliniques pour la radiothérapie de modulation d’intensité. Cancer Radiother 10:258–268PubMedCrossRefGoogle Scholar
  66. Rasch C, Barillot I, Remeijer P et al (1999) Definition of the prostate in CT and MRI: a multi-observer study. Int J Radiat Oncol Biol Phys 43:57–66PubMedCrossRefGoogle Scholar
  67. Rene N, Faria S, Cury F et al (2010) Hypofractionated radiotherapy for favorable risk prostate cancer. Int J Radiat Oncol Biol Phys 77(3):805–810PubMedCrossRefGoogle Scholar
  68. Roach M III, Faillace-Akazawa P, Malfatti C et al (1996) Prostate volumes defined by magnetic imaging and computerized tomographic scans for three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 35:1011–1018PubMedCrossRefGoogle Scholar
  69. Rosewall T, Kong V, Vesprini D et al (2009) Prostate deli­neation using CT and MRI for radiotherapy patients with bilateral hip prostheses. Radiother Oncol 90:325–330PubMedCrossRefGoogle Scholar
  70. Sanguineti G, Cavey ML, Endres EJ et al (2006) Does treatment of the pelvic nodes with IMRT increase late rectal toxicity over conformal prostate-only radiotherapy to 76 Gy? Strahlenther Onkol 182(9):543–549PubMedCrossRefGoogle Scholar
  71. Sannazzari GL, Ragona R, Ruo Redda MG et al (2002) CT-MRI image fusion for delineation of volumes in three-dimensional conformal radiation therapy in the treatment of localized prostate cancer. Br J Radiol 75:603–607PubMedGoogle Scholar
  72. Sathya JR, Davis IR, Julian JA, Guo Q (2005) Randomized trial comparing iridium implant plus external-beam radiation therapy with external-beam radiation therapy alone in node-negative locally advanced cancer of the prostate. J Clin Oncol 23(6):1192–1199PubMedCrossRefGoogle Scholar
  73. Scarbrough TJ, Golden NM, Ting JY et al (2006) Comparison of ultrasound and implanted seed marker prostate localization methods: implications for image-guided radiotherapy. Int J Radiat Oncol Biol Phys 65:378–387PubMedCrossRefGoogle Scholar
  74. Sharma NK, Li T, Chen DY, Pollack A et al (2011) Intensity-modulated radiotherapy reduces gastrointestinal toxicity in patients treated with androgen deprivation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 80(2):437–444PubMedCrossRefGoogle Scholar
  75. Smith WL, Lewis C, Bauman G et al (2007) Prostate volume contouring: a 3D analysis of segmentation using 3DTRUS, CT and MR. Int J Radiat Oncol Biol Phys 67:1238–1247PubMedCrossRefGoogle Scholar
  76. Sorcini B, Tilikidis A (2006) Clinical application of image-guided radiotherapy (IGRT) (on the Varian OBI platform). Cancer Radiother 10:252–257PubMedCrossRefGoogle Scholar
  77. Steenbakkers RJHM, Deurloo KEI, Nowak PJCM et al (2003) Reduction of dose delivered to the rectum and bulb of the penis using MRI delineation for radiotherapy of the prostate. Int J Radiat Oncol Biol Phys 57:1269–1279PubMedCrossRefGoogle Scholar
  78. Tanaka O, Hayashi S, Sakurai K et al (2006) Importance of the CT/MRI fusion method as a learning tool for CT-based postimplant dosimetry in prostate brachytherapy. Radiother Oncol 81:303–308PubMedCrossRefGoogle Scholar
  79. Tang CI, Loblaw DA, Cheung P et al (2008) Phase I/II study of a five-fraction hypofractionated accelerated radiotherapy treatment for Low-risk localised prostate cancer: early results of pHART3. Clin Oncol 20:729–737CrossRefGoogle Scholar
  80. Usmani N, Sloboda R, Kamal W et al (2011) Can images obtained with high field strength magnetic resonance imaging reduce contouring variability of the prostate? Int J Radiat Oncol Biol Phys 80:728–734PubMedCrossRefGoogle Scholar
  81. Valicenti RK, Sweet JW, Hauck WW et al (1999) Variation of clinical target volume definition in three-dimensional conformal radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 44:931–935PubMedCrossRefGoogle Scholar
  82. Veldeman L, Madani I, Hulstaert F et al (2008) Evidence behind use of intensity-modulated radiotherapy: a systematic review of comparative clinical studies. Lancet Oncol 9(4):367–375PubMedCrossRefGoogle Scholar
  83. Vesprini D, Sia M, Lockwood G, Moseley D et al (2011) Role of principal component analysis in predicting toxicity in prostate cancer patients treated with hypofractionated intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 81:e415–e421PubMedCrossRefGoogle Scholar
  84. Villeirs GM, Verstraete KL, De Neve WJ, De Meerleer GO (2005) Magnetic resonance imaging anatomy of the prostate and periprostatic area: a guide for radiotherapists. Radiother Oncol 76:99–106PubMedCrossRefGoogle Scholar
  85. Vora SA, Wong WW, Schild SE et al (2007) Analysis of biochemical control and prognostic factors in patients treated with either low-dose three-dimensional conformal radiation therapy or high-dose intensity-­modulated radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 68(4):1053–1058PubMedCrossRefGoogle Scholar
  86. Wang JZ, Guerrero M, Li XA (2003) How low is the α/β ratio for prostate cancer? Int J Radiat Oncol Biol Phys 55:194–203PubMedCrossRefGoogle Scholar
  87. Yassa M, Fortin B, Fortin MA et al (2008) Combined hypofractionated radiation and hormone therapy for the treatment of intermediate-risk prostate cancer. Int J Radiat Oncol Biol Phys 71(1):58–63PubMedCrossRefGoogle Scholar
  88. Yeoh EE, Botten RJ, Butters J et al (2010) Hypofractionated versus conventionally fractionated radiotherapy for prostate carcinoma: final results of phase III randomized trial. Int J Radiat Oncol Biol Phys 81:1271–1278PubMedCrossRefGoogle Scholar
  89. Zelefsky MJ, Fuks Z, Happersett L et al (2000) Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer. Radiother Oncol 55(3):241–249PubMedCrossRefGoogle Scholar
  90. Zelefsky MJ, Fuks Z, Hunt M et al (2002) High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in n772 patients. Int J Radiat Oncol Biol Phys 53(5):1111–1116PubMedCrossRefGoogle Scholar
  91. Zelefsky MJ, Yamada Y, Fucks Z et al (2008a) Long-term results of conformal radiotherapy for prostate cancer: impact of dose escalation on biochemical tumor ­control and distant metastases free survival outcomes. Int J Radiat Oncol Biol Phys 71:1028–1033PubMedCrossRefGoogle Scholar
  92. Zelefsky MJ, Levin EJ, Hunt M et al (2008b) Incidence of late rectal and urinary toxicities after three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 70(4):1124–1129PubMedCrossRefGoogle Scholar
  93. Zerini D, Jereczek-Fossa BA, Vavassori A et al (2010) 3D-conformal hypofractionated radiotherapy for prostate cancer with daily transabdominal ultrasonography prostate localization: toxicity and outcome of a pilot study. Tumori 96(6):941–946PubMedGoogle Scholar
  94. Zietman AL, DeSilvio ML, Slater JD et al (2005) Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA 294(10):1233–1239PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Olivier Chapet
    • 1
  • Corina Udrescu
    • 1
  • Ciprian Enachescu
    • 1
  1. 1.Department of Radiation Oncology, Centre Hospitalier Lyon SudUniversity Claude Bernard Lyon 1Pierre BeniteFrance

Personalised recommendations