Modeling and Optical Characterization of the Localized Surface Plasmon Resonances of Tailored Metal Nanoparticles

  • J. Toudert


Metal nanoparticles present peculiar optical properties at their surface plasmon resonances, such as marked optical absorption, enhanced near-field, and scattering to the far-field. From works involving the fabrication of tailor-made metal nanoparticles together with the accurate characterization of their optical response, it has been demonstrated that the plasmon-related optical features are sensitive to the size, shape, and environment of the nanoparticles. Such sensitivity is of particular interest for sensing applications and permits to tune the optical response of the nanoparticles, thus making them suitable for a wide range of applications in photonics. From a theoretical point of view, models and methods were developed in order to address the role of the previous structural parameters on the optical response of tailor-made nanoparticles. The aim of this chapter is to give insights into the plasmonic response of metal nanoparticles or nanocomposite materials built from them and into modern techniques and methods suitable for their fabrication and for the characterization and modeling of their optical response.


Plasmon Resonance Plasmon Mode Extinction Spectrum Finite Difference Time Domain Prolate Spheroid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Leonhardt U (2007) Optical metamaterials: invisibility cup. Nature Photonics 1:207ADSCrossRefGoogle Scholar
  2. 2.
    Faraday M (1857) Experimental relations of gold (and other metals) to light. Phil Trans Roy Soc Lon 147:145CrossRefGoogle Scholar
  3. 3.
    Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 3:377CrossRefGoogle Scholar
  4. 4.
    Kreibig U, Zacharias P (1970) Surface plasma resonances in small spherical silver and gold particles. Z Phys 231:128ADSCrossRefGoogle Scholar
  5. 5.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  6. 6.
    Ziljstra P, Chon JWM, Gu M (2009) Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459:410ADSCrossRefGoogle Scholar
  7. 7.
    Huang X, El Sayed IH, Qian W, El Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region using gold nanorods. J Am Chem Soc 128:2115CrossRefGoogle Scholar
  8. 8.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189ADSCrossRefGoogle Scholar
  9. 9.
    Lakowicz JR, Ray K, Chowdhury M, Szmacinski H, Fu Y, Zhang J, Nowaczyk K (2008) Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst 133:1308ADSCrossRefGoogle Scholar
  10. 10.
    Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ (2005) Surface-enhanced raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett 5:1569ADSCrossRefGoogle Scholar
  11. 11.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205ADSCrossRefGoogle Scholar
  12. 12.
    Simonot L, Babonneau D, Camelio S, Lantiat D, Guérin P, Lamongie B, Antad V (2010) In-situ optical spectroscopy during deposition of Ag:Si3N4 nanocomposite films by magnetron sputtering. Thin Sol Films 518:2637ADSCrossRefGoogle Scholar
  13. 13.
    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494CrossRefGoogle Scholar
  14. 14.
    Wu PC, Kim T-H, Brown AS, Losurdo M, Bruno G, Everitt HO (2007) Real-time resonance tuning of liquid Ga nanoparticles by in-situ spectroscopic ellipsometry. Appl Phys Lett 90:103119ADSCrossRefGoogle Scholar
  15. 15.
    Langhammer C, Yuan Z, Zoric I, Kasemo B (2006) Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett 6:833ADSCrossRefGoogle Scholar
  16. 16.
    Tanabe K (2008) Field enhancement around metal nanoparticles and nanoshells: a systematic investigation. J Phys Chem C 112:15721CrossRefGoogle Scholar
  17. 17.
    Chan GH, Zhao J, Schatz GC, Van Duyne RP (2008) Localized plasmon resonant spectroscopy of triangular aluminium nanoparticles. J Phys Chem C 112:13958CrossRefGoogle Scholar
  18. 18.
    Jiang XM, Ji Q, Ji LL, Chang A, Leung K (2003) Resolution improvement for maskless micro ion beam reduction lithography system. S Vac Sci Technol B 21:2724CrossRefGoogle Scholar
  19. 19.
    Bender M, Otto M, Hadam B, Vratzov B, Spangenberg B, Kurz H (2000) Fabrication of nanostructures using a UV-based imprint technique. Microtech Eng 53:233CrossRefGoogle Scholar
  20. 20.
    Vieu C, Carcenac F, Pepin A, Chen Y, Mejias M, Lebib A, Manin-Ferlazzo L, Couraud L, Launois H (2000) Electron beam lithography: resolution limits and applications. Appl Surf Sci 164:111ADSCrossRefGoogle Scholar
  21. 21.
    Cerrina F (2000) X-ray imaging: applications to patterning and lithography. J Phys D Appl Phys 33:R103ADSCrossRefGoogle Scholar
  22. 22.
    Xu Z, Yu W, Wang T, Zhang H, Fu Y, Lu H, Li F, Lu Z, Sun Q (2011) Plasmonic nanolithography: a review. Plasmonics 6:565CrossRefGoogle Scholar
  23. 23.
    Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105:5599CrossRefGoogle Scholar
  24. 24.
    Rechberger W, Hohenau A, Leitner A, Krenn JR, Lamprecht B, Aussenegg FR (2003) Optical properties of two interacting gold nanoparticles. Opt Comm 220:137ADSCrossRefGoogle Scholar
  25. 25.
    Banaee MG, Crozier KB (2010) Gold nanorings as substrates for surface-enhanced Raman scattering. Opt Lett 35:760ADSCrossRefGoogle Scholar
  26. 26.
    Grand J, Adam PM, Grimault AS, Vial A, Lamy de la Chapelle M, Bijeon JL, Kotscheev S, Royer P (2006) Optical extinction of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory. Plasmonics 1:13CrossRefGoogle Scholar
  27. 27.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment. J Phys Chem B 107:668CrossRefGoogle Scholar
  28. 28.
    Verellen N, Van Dorpe P, Vercruysse D, Vandenbosch GAE, Moschchalkov VV (2011) Dark and bright localized surface plasmons in nanocrosses. Opt Expr 19:11034ADSCrossRefGoogle Scholar
  29. 29.
    Henry CR (1998) Surface studies of supported model catalysts. Surf Sci Rep 31:231ADSCrossRefGoogle Scholar
  30. 30.
    Toudert J, Camelio S, Babonneau D, Denanot MF, Girardeau T, Espinos JP, Yubero F, Gonzalez Elipe AR (2006) Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3 N4 and BN layers. J Appl Phys 98:114316ADSCrossRefGoogle Scholar
  31. 31.
    Ouacha H, Hendrich C, Hubenthal F, Träger F (2005) Laser-assisted growth of gold nanoparticles: shaping and optical characterization. Appl Phys B 81:663ADSCrossRefGoogle Scholar
  32. 32.
    Wenzel T, Bosbach J, Goldmann A, Stietz F, Träger F (1999) Shaping nanoparticles and their optical spectra with photons. Appl Phys B 69:513ADSCrossRefGoogle Scholar
  33. 33.
    Fort E, Ricolleau C, Sau Pueyo J (2003) Dichroic thin films of silver nanoparticle chain arrays on facetted alumina templates. Nano Lett 3:65ADSCrossRefGoogle Scholar
  34. 34.
    Sánchez-Valencia JR, Toudert J, Boras A, López-Santos C, Barranco A, Feliu IO, Gonzalez-Elipe AR (2010) Tunable in-plane optical anisotropy of Ag nanoparticles deposited by DC sputtering onto SiO2 nanocolumnar thin films. Plasmonics 5:241CrossRefGoogle Scholar
  35. 35.
    Suzuki M, Maekita W, Wada Y, Nakayama K, Kimura K, Fukuoka T, Mori Y (2006) In-line aligned and bottom-up Ag nanorods for surface-enhanced Raman spectroscopy. Appl Phys Lett 88:203121ADSCrossRefGoogle Scholar
  36. 36.
    Sánchez-Valencia JR, Toudert J, Borras A, Barranco A, Lahoz R, de la Fuente GF, Frutos F, Gonzalez-Elipe AR (2011) Selective dichroic patterning by nanosecond laser treatment of Ag nanostripes. Adv Mater 24:848CrossRefGoogle Scholar
  37. 37.
    Lantiat D, Babonneau D, Camelio S, Pailloux F, Denanot MF (2007) Evidence for capping-layer effects on the morphology and plasmon excitation of Ag nanoparticles. J Appl Phys 102:113518ADSCrossRefGoogle Scholar
  38. 38.
    Toudert J, Fernandez H, Babonneau D, Camelio S, Girardeau T, Solis J (2009) Linear and third-order nonlinear optical responses of multilayered Ag:Si3N4 nanocomposites. Nanotechnology 20:475705ADSCrossRefGoogle Scholar
  39. 39.
    Camelio S, Babonneau D, Girardeau T, Toudert J, Lignou F, Denanot M-F, Maître N, Barranco A, Guérin P (2003) Optical and structural properties of Ag-Si3N4 nanocermets prepared by means of ion-beam sputtering in alternate and codeposition modes. Appl Opt 42:674ADSCrossRefGoogle Scholar
  40. 40.
    Margueritat J, Gonzalo J, Afonso CN, Ortiz MI, Ballesteros C (2006) Production of self-aligned metal nanocolumns embedded in an oxide matrix film. Appl Phys Lett 88:093107ADSCrossRefGoogle Scholar
  41. 41.
    Burgin J, Langot P, Arbouet A, Margueritat J, Gonzalo J, Afonso CN, Vallée F, Mlayah A, Rossell MD, Van Tendeloo G (2008) Acoustic vibration modes and electron-lattice coupling in self-assembled silver nanocolumns. Nano Lett 8:1296ADSCrossRefGoogle Scholar
  42. 42.
    Perez A, Melinon P, Dupuis V, Jensen P, Prevel B, Tuaillon J, Bardotti L, Martet C, Treilleux M, Broyer M, Pellarin M, Vaille J-L, Palpant B, Lerme J (1997) Cluster assembled materials: a novel class of nanostructured solids with original structure and properties. J Phys D Appl Phys 30:709ADSCrossRefGoogle Scholar
  43. 43.
    Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870CrossRefGoogle Scholar
  44. 44.
    Sau TK, Rogach AL (2010) Non-spherical noble metal nanoparticles: colloidal-chemical synthesis and morphology control. Adv Mater 22:1781CrossRefGoogle Scholar
  45. 45.
    Rycenga M, Cobley CM, Zheng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669CrossRefGoogle Scholar
  46. 46.
    Shan J, Tenhu H (2007) Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications. Chem Comm 44:4580CrossRefGoogle Scholar
  47. 47.
    Liz-Marzán LM, Giersig M, Mulvaney P (1996) Synthesis of gold silica core-shell particles. Langmuir 12:4329CrossRefGoogle Scholar
  48. 48.
    Tan SJ, Campolongo MJ, Luo D, Cheng W (2011) Building plasmonic nanostructures with DNA. Nat Nanotech 6:268ADSCrossRefGoogle Scholar
  49. 49.
    Ohko Y, Tatsuma T, Fujii T, Naoi K, Niwa C, Kubota Y, Fujishima A (2003) Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nat Mat 2:29CrossRefGoogle Scholar
  50. 50.
    Crespo-Monteiro N, Destouches N, Bois L, Chassagneux F, Reynaud S, Fournel T (2010) Reversible, and irreversible laser microinscription on silver-containing mesoporous titania films. Adv Mater 22:3166CrossRefGoogle Scholar
  51. 51.
    Muskens O, Christofilos D, Del Fatti N, Vallée F (2006) Optical response of a single noble metal nanoparticle. J Opt A Pure Appl Opt 8(4):S264–S272ADSCrossRefGoogle Scholar
  52. 52.
    Sönnichsen C, Geier S, Hecker NE, von Plessen G, Feldman J, Ditlbacher H, Lamprecht B, Krenn JR, Aussenegg FR, Chan VZ-H, Spatz JP, Möller M (2000) Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl Phys Lett 77:2949ADSCrossRefGoogle Scholar
  53. 53.
    Zijstra P, Orrit M (2011) Single metal nanoparticles: optical detection, spectroscopy and applications. Rep Prog Phys 74:106401ADSCrossRefGoogle Scholar
  54. 54.
    Gunnarsson L, Rindzevicius T, Prikulis J, Kasemo B, Käll M, Zou S, Schatz GC (2005) Confined plasmons in nanofabricated single silver particle pairs: experimental observation of strong interparticle interactions. J Phys Chem B 109:1079CrossRefGoogle Scholar
  55. 55.
    Wiederrecht GP (2004) Near-field optical imaging of noble metal nanoparticles. Eur Phys J Appl Phys 28:3ADSCrossRefGoogle Scholar
  56. 56.
    Bouhelier A, Novotny L (2007) Near-field optical excitation and detection of surface plasmons; in surface plasmon nanophotonics. Springer, Berlin, p 139CrossRefGoogle Scholar
  57. 57.
    Okamoto H, Imura K (2009) Near-field optical imaging of enhanced electric fields and plasmon waves in metal nanostructures. Prog Surf Sci 84:199ADSCrossRefGoogle Scholar
  58. 58.
    Hubert C, Rumyantseva A, Lerondel G, Grand J, Kotscheev S, Billot L, Vial A, Bachelot R, Royer P (2005) Near-field photochemical imaging of noble metal nanostructures. Nano Lett 5:615ADSCrossRefGoogle Scholar
  59. 59.
    Ibn El Ahrach H, Bachelot R, Vial A, Lérondel G, Plain J, Royer P, Soppera O (2007) Spectral degeneracy breaking of the plasmon resonances of single metal nanoparticles by nanoscale near-field photopolymerisation. Phys Rev Lett 98:107402ADSCrossRefGoogle Scholar
  60. 60.
    Plech A, Leiderer P, Bonneberg J (2009) Femtosecond laser near field ablation. Laser Photon Rev 3:435CrossRefGoogle Scholar
  61. 61.
    Bosman M, Keast VJ, Watanabe M, Maaroof AI, Cortie MB (2007) Mapping surface plasmon at the nanometre scale with an electron beam. Nanotechnology 18:165505ADSCrossRefGoogle Scholar
  62. 62.
    Nelayah J, Kociak M, Stéphan O, Garcia de Abajo FJ, Tencé M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzan LM, Colliex C (2007) Mapping surface plasmons on a single metallic nanoparticle. Nature 3:349Google Scholar
  63. 63.
    Chu MW, Myroshnychenko V, Chen CH, Deng JP, Mou CY, Garcia de Abajo FJ (2009) Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam. Nano Lett 9:399ADSCrossRefGoogle Scholar
  64. 64.
    Chaturvedi P, Hsu KH, Kumar A, Fung KH, Mabon JC, Fang NX (2009) Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy. ACS Nano 3:2965CrossRefGoogle Scholar
  65. 65.
    Losurdo M, Bergmair M, Bruno G, Cattelan D, Cobet C, de Martino A, Fleischer K, DohcevicMitrovic Z, Esser N, Galliet M, Gajic R, Hemzal D, Hingerl K, Humlicek J, Ossikovski R, Popovic ZV, Saxl O (2009) Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives. J Nanopart Res 11:1521CrossRefGoogle Scholar
  66. 66.
    Woormeester H, Kooij ES, Poelsema B (2003) Unambiguous optical characterization of nanocolloidal gold films. Phys Rev B 68:085406ADSCrossRefGoogle Scholar
  67. 67.
    Oates TWH, Ranjan M, Facsko S, Arwin H (2011) Highly anisotropic effective dielectric functions of silver nanoparticle arrays. Opt Expr 19:2014ADSCrossRefGoogle Scholar
  68. 68.
    Bohren CE, Huffman DR (2004) Absorption and scattering of light by small particles. Wiley-VCH, WeinheimGoogle Scholar
  69. 69.
    Palik ED (1997) Handbook of optical constants of solids. Academic, New YorkGoogle Scholar
  70. 70.
    Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357ADSCrossRefGoogle Scholar
  71. 71.
    Bi H, Cai W, Kan C, Zhang L, Martin D, Träger F (2002) Optical study of redox processes of Ag nanoparticles at high temperatures. J Appl Phys 92:7491ADSCrossRefGoogle Scholar
  72. 72.
    Kim B, Park C-S, Muruyama M, Hochella MF Jr (2010) Discovery and characterization of silver sulphide nanoparticles in sewage sludge products. Environ Sci Technol 44:7509CrossRefGoogle Scholar
  73. 73.
    Hövel H, Fritz S, Hilger A, Kreibig U, Vollmer M (1993) Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys Rev B 48:18178ADSCrossRefGoogle Scholar
  74. 74.
    Kreibig U, Bour G, Hilger A, Gartz M (1999) Optical properties of cluster matter: influence of interfaces. Phys Stat Sol A 175:351ADSCrossRefGoogle Scholar
  75. 75.
    Kraus WA, Schatz GC (1983) Plasmon resonant broadening in small metal particles. J Chem Phys 79:6130ADSCrossRefGoogle Scholar
  76. 76.
    Coronado E, Schatz GC (2003) Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach. J Chem Phys 119:3926ADSCrossRefGoogle Scholar
  77. 77.
    Cai W, Hofmeister H, Dubiel M (2001) Importance of lattice contraction in surface plasmon resonance shift for free and embedded silver particles. Eur Phys J D 13:245ADSCrossRefGoogle Scholar
  78. 78.
    Stockman M (2011) Nanoplasmonics: the physics behind the applications. Physics Today 64:38CrossRefGoogle Scholar
  79. 79.
    Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103:3073CrossRefGoogle Scholar
  80. 80.
    Link S, Burda C, Nikoobakht B, El-Sayed MA (2000) Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 104:6152CrossRefGoogle Scholar
  81. 81.
    Muskens OL, Bachelier G, Del Fatti N, Vallée F, Brioude A, Jiang X, Pileni M-P (2008) Quantitative absorption spectroscopy of a single gold nanorod. J Phys Chem C 112:8917CrossRefGoogle Scholar
  82. 82.
    Toudert J, Babonneau D, Camelio S, Girardeau T, Yubero F, Espinós JP, Gonzalez-Elipe AR (2007) Using ion beams to tune the nanostructure and optical response of co-deposited Ag:BN thin films. J Phys D Appl Phys 40:4614ADSCrossRefGoogle Scholar
  83. 83.
    Margueritat J, Gonzalo J, Afonso CN, Mlayah A, Murray DB, Saviot L (2006) Surface plasmons and vibrations of self-assembled silver nanocolumns. Nano Lett 6:2037ADSCrossRefGoogle Scholar
  84. 84.
    Barber PW, Chang RK, Massoudi H (1983) Electrodynamic calculation of the surface-enhanced electric intensities on large Ag spheroids. Phys Rev B 27(12):7251ADSCrossRefGoogle Scholar
  85. 85.
    Jersch J, Demming F, Hildenhagen LJ, Dickmann K (1998) Field enhancement of optical radiation in the nearfield of scanning microscope tips. Appl Phys A 66:29ADSCrossRefGoogle Scholar
  86. 86.
    Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. J Opt Soc Am B 16:1824ADSCrossRefGoogle Scholar
  87. 87.
    Wu D, Xu X, Liu X (2008) Electric field enhancement in bimetallic gold and silver nanoshells. Sol State Comm 148:163ADSCrossRefGoogle Scholar
  88. 88.
    Khlebtsov B, Melnikov A, Zharov V, Klebtsov N (2006) Absorption and scattering of light by a dimer of metal nanospheres: comparison of dipole and multipole approaches. Nanotechnology 17:1437ADSCrossRefGoogle Scholar
  89. 89.
    Gluodenis M, Foss CA Jr (2002) The effect of mutual orientation on the spectra of metal nanoparticle rod-rod and rod-sphere pairs. J Phys Chem B 106:9484CrossRefGoogle Scholar
  90. 90.
    Knight MW, Wu Y, Lassiter JB, Nordlander P, Halas NJ (2009) Substrate matters: influence of an adjacent dielectric on an individual plasmonic nanoparticle. Nano Lett 9:2188ADSCrossRefGoogle Scholar
  91. 91.
    Pinchuk A, Hilger A, von Plessen G, Kreibig U (2004) Substrate effect on the optical response of nanoparticles. Nanotechnology 15:1890ADSCrossRefGoogle Scholar
  92. 92.
    Pinchuk A, Schatz G (2005) Anisotropic polarizability tensor of a dimer of nanospheres in the vicinity of a plane substrate. Nanotechnology 16:2209ADSCrossRefGoogle Scholar
  93. 93.
    Fuchs R (1975) Theory of the optical properties of small ionic crystal cubes. Phys Rev B 11:1732ADSCrossRefGoogle Scholar
  94. 94.
    Pecharromán C, Pérez-Juste J, Mata-Osoro G, Liz-Marzán LM, Mulvaney P (2008) Redshift of surface plasmon modes of small rods due to their atomic roughness and end-cap geometry. Phys Rev B 77:035418ADSCrossRefGoogle Scholar
  95. 95.
    Davis TJ, Gómez DE, Vernon KC (2010) Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles. Nano Lett 10:2618ADSCrossRefGoogle Scholar
  96. 96.
    Maxwell-Garnett JC (1904) Colours in metal glasses and in metallic films. Phil Trans R Soc Lond 203:385ADSCrossRefGoogle Scholar
  97. 97.
    Theiss W (1993) The use of effective medium theories in optical spectroscopy. Adv Sol State Phys 33:149CrossRefGoogle Scholar
  98. 98.
    Venger EF, Goncharenko AV, Dmitruk ML (1999) Optics of small particles and disperse media. Naukova Dumka, KyivGoogle Scholar
  99. 99.
    Azzam RMA, Bashara NM (1999) Ellipsometry and polarized light. Elsevier, North HollandGoogle Scholar
  100. 100.
    Ung T, Liz-Marzán LM, Mulvaney P (2001) Optical properties of thin films of Au@SiO2 particles. J Phys Chem B 105:3441CrossRefGoogle Scholar
  101. 101.
    Levy O, Stroud D (1997) Maxwell-Garnett theory for mixtures of anisotropic inclusions: Applications for conducting polymers. Phys Rev B 56:13CrossRefGoogle Scholar
  102. 102.
    Goncharenko AV, Lozvski VZ, Venger EF (2001) Effective dielectric response of a shape distributed system. J Phys Condens Matter 13:8217ADSCrossRefGoogle Scholar
  103. 103.
    Gilliot M, En Naciri A, Johann L, Stoquert JP, Grob JJ, Muller D (2007) Optical anisotropy of shaped oriented cobalt nanoparticles by generalized spectroscopic ellipsometry. Phys Rev B 76:045424Google Scholar
  104. 104.
    Galeener FL (1971) Submicroscopic-void resonance: the effect of internal roughness on optical absorption. Phys Rev Lett 27:421ADSCrossRefGoogle Scholar
  105. 105.
    Barrera RG, Giraldo J, Mochán WL (1993) Effective dielectric response of a composite with aligned spheroidal inclusions. Phys Rev B 47:14CrossRefGoogle Scholar
  106. 106.
    Hornyak GL, Patrissi CJ, Martin CR (1997) Fabrication, characterization, and optical properties of gold nanoparticles/porous alumina composites: the non-scattering Maxwell-Garnett limit. J Phys Chem B 101:1548CrossRefGoogle Scholar
  107. 107.
    Dakka A, Lafait J, Sella C, Berthier S, Abd-Lefdil M, Martin JC, Maaza M (2000) Optical properties of Ag-TiO2 nanocermet films prepared by cosputtering and multilayer deposition techniques. Appl Opt 39:2745ADSCrossRefGoogle Scholar
  108. 108.
    Atkinson R, Hendren WR, Wurtz GA, Dickson W, Zayats AV, Evans P, Pollard RJ (2006) Anisotropic optical properties of arrays of gold nanorods embedded in alumina. Phys Rev B 73:235402ADSCrossRefGoogle Scholar
  109. 109.
    Yamaguchi T, Yoshida S, Kinbara A (1974) Optical effect of the substrate on the anomalous absorption of aggregated thin silver films. Thin Sol Films 21:173ADSCrossRefGoogle Scholar
  110. 110.
    Dalacu D, Martinu L (2001) Optical properties of discontinuous gold films: finite-size effects. J Opt Soc Am B 18:85ADSCrossRefGoogle Scholar
  111. 111.
    Fedotov VA, Emel’yanov VI, MacDonald KF, Zheludev NI (2004) Optical properties of closely packed nanoparticle films: spheroids and nanoshells. J Opt A Pure Appl Opt 6:155ADSCrossRefGoogle Scholar
  112. 112.
    Hilger A, Cüppers N, Tenfelde M, Kreibig U (2000) Surface and interface effects in the optical properties of silver nanoparticles. Eur Phys J D 10:115ADSCrossRefGoogle Scholar
  113. 113.
    Hilger A, Tenfelde M, Kreibig U (2001) Silver nanoparticles deposited on dielectric surfaces. Appl Phys B 73:361ADSCrossRefGoogle Scholar
  114. 114.
    Wenzel T, Bosbach J, Stietz F, Träger F (1999) In-situ determination of the shape of supported silver clusters during growth. Surf Sci 432:257ADSCrossRefGoogle Scholar
  115. 115.
    Babonneau D, Lantiat D, Camelio S, Toudert J, Simonot L, Pailloux F, Denanot M-F, Girardeau T (2008) Gold and silver nanoparticles embedded in dielectric-capping layers studied by HAADF-STEM. EPJ Appl Phys 44:3ADSCrossRefGoogle Scholar
  116. 116.
    Yoshida S, Yamaguchi T, Kinbara A (1971) Optical properties of aggregated silver films. J Opt Soc Am 61:62ADSCrossRefGoogle Scholar
  117. 117.
    Toudert J, Babonneau D, Simonot L, Babonneau D, Camelio S, Girardeau T (2008) Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization. Nanotechnology 19(12):125709ADSCrossRefGoogle Scholar
  118. 118.
    Camelio S, Babonneau D, Lantiat D, Simonot L, Pailloux F (2009) Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy erosion. Phys Rev B 80:155434ADSCrossRefGoogle Scholar
  119. 119.
    Maier SA, Brongersma ML, Kik PG, Atwater HA (2002) Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy. Phys Rev B 65:193408ADSCrossRefGoogle Scholar
  120. 120.
    Valamanesh M, Borensztein Y, Langlois C, Lacaze E (2010) Substrate effect on the plasmon resonance of supported flat silver nanoparticles. J Phys Chem C 115:2914CrossRefGoogle Scholar
  121. 121.
    Bergman DJ (1979) Dielectric constant for a two-component granular composite: a practical scheme for calculating the pole spectrum. Phys Rev B 19:2359ADSCrossRefGoogle Scholar
  122. 122.
    Tuncer E (2005) Extracting the spectral density function for a binary composite without a priori assumptions. Phys Rev B 71:012101ADSCrossRefGoogle Scholar
  123. 123.
    Fu L, Resca L (1994) Electrical response of heterogeneous systems with inclusions of arbitrary structure. Phys Rev B 49:6625ADSCrossRefGoogle Scholar
  124. 124.
    Fu L, Macedo PB, Resca L (1993) Analytical approach to the interfacial polarization of heterogeneous systems. Phys Rev B 47:13818ADSCrossRefGoogle Scholar
  125. 125.
    Bedeaux D, Vlieger J (1973) A phenomenological theory of the dielectric properties of thin films. Physica 67:55ADSCrossRefGoogle Scholar
  126. 126.
    Vlieger J, Bedeaux D (1980) A statistical theory for the dielectric properties of thin island films. Physica 69:107MathSciNetGoogle Scholar
  127. 127.
    Bedeaux D, Vlieger J (1983) A statistical theory for the dielectric properties of thin island films: application and comparison with experimental results. Thin Sol Films 102:265ADSCrossRefGoogle Scholar
  128. 128.
    Wind MM, Vlieger J, Bedeaux D (1987) The polarizability of a truncated sphere on a substrate I. Physica A 141:33ADSCrossRefGoogle Scholar
  129. 129.
    Lazzari R, Simonsen I, Bedeaux D, Vlieger J, Jupille J (2001) Polarizability of truncated spheroidal particles supported by a substrate: model and applications. Eur Phys J B 24:267ADSCrossRefGoogle Scholar
  130. 130.
    Jackson JD (1975) Classical electrodynamics. Wiley, New YorkzbMATHGoogle Scholar
  131. 131.
    Flores-Camacho JM, Sun LD, Saucedo-Zeni N, Weidlinger G, Johage M, Zeppenfeld P (2008) Optical anisotropies of metal clusters supported on a birefringent substrate. Phys Rev B 78:075416ADSCrossRefGoogle Scholar
  132. 132.
    Harmaans MT, Bedeaux D (1993) The polarizability and the optical properties of lattices and random distributions of small metal spheres on a substrate. Thin Sol Films 224:117ADSCrossRefGoogle Scholar
  133. 133.
    Simonsen I, Lazzari R, Jupille J, Roux S (2000) Numerical modelling of the optical response of supported metal particles. Phys Rev B 61:7722ADSCrossRefGoogle Scholar
  134. 134.
    Lazzari R, Simonsen I (2002) Granfilm: a software for calculating thin-layer dielectric properties and Fresnel coefficients. Thin Solid Films 419:124ADSCrossRefGoogle Scholar
  135. 135.
    Lazzari R, Renaud G, Revenant C, Jupille J, Borensztein Y (2006) Adhesion of growing nanoparticles at a glance: surface differential spectroscopy and grazing incidence small angle x-ray scattering. Phys Rev B 79:125428ADSCrossRefGoogle Scholar
  136. 136.
    Lazzari R, Roux S, Simonsen I, Jupille J, Bedeaux D, Vlieger J (2002) Multipolar plasmon resonances in supported silver particles: the case of Ag/α-Al2O3 (0001). Phys Rev B 65:235424ADSCrossRefGoogle Scholar
  137. 137.
    Kooij ES, Ahmed W, Zandvliet HJW, Poelsema B (2011) Localized plasmons in noble metal nanospheroids. J Phys Chem C 115:10321CrossRefGoogle Scholar
  138. 138.
    Messinger BJ, von Raben KU, Chang RK, Barber PW (1981) Local fields at the surface of noble-metal microspheres. Phys Rev B 24:649ADSCrossRefGoogle Scholar
  139. 139.
    Myroschnychenko V, Rodríguez-Fernández J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, LizMarzán LM, Garcia de Abajo FJ (2009) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37:1792CrossRefGoogle Scholar
  140. 140.
    Meier M, Wokaun A (1983) Enhanced fields on large metal particles: dynamic depolarization. Opt Lett 8:581ADSCrossRefGoogle Scholar
  141. 141.
    Wokaun A, Gordon JP, Liao PF (1982) Radiation damping in surface-enhanced Raman scattering. Phys Rev Lett 48:957ADSCrossRefGoogle Scholar
  142. 142.
    Evanoff DD Jr, Chumanov G (2004) Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering and absorption cross-sections. J Phys Chem B 108:13957CrossRefGoogle Scholar
  143. 143.
    Jensen T, Kelly L, Lazarides A, Schatz GC (1999) Electrodynamics of noble metal nanoparticles and nanoparticle clusters. J Clust Sci 10:295CrossRefGoogle Scholar
  144. 144.
    Hu L, Chen X, Chen G (2008) Surface-plasmon enhanced near-bandgap light absorption in silicon photovoltaics. J Comp Theo Nanosci 5:2096MathSciNetCrossRefGoogle Scholar
  145. 145.
    Asano S, Yamamoto G (1975) Light scattering by a spheroidal particle. Appl Opt 14:29ADSGoogle Scholar
  146. 146.
    Ghosh SK, Pal T (2007) Interparticle coupling effects on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797CrossRefGoogle Scholar
  147. 147.
  148. 148.
    Mischenko MI, Travis LD, Mackowski DW (1999) T-matrix computations of light scattering by non-spherical particles: a review. J Quant Spectrosc Radiat Transfer 55:535ADSCrossRefGoogle Scholar
  149. 149.
    Mischenko MI, Videen G, Babenko VA, Khlebtsov NG, Wriedt T (2004) T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database. J Quant Spectrosc Radiat Transfer 88:357Google Scholar
  150. 150.
    Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11:1491ADSCrossRefGoogle Scholar
  151. 151.
    Grosges T, Vial A, Barchiesi D (2005) Models of near-field spectroscopic studies: comparison between finite-element and finite-difference methods. Opt Expr 13:8483ADSCrossRefGoogle Scholar
  152. 152.
    Yee K (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Ant Propag 14:302ADSzbMATHGoogle Scholar
  153. 153.
    Garcia de Abajo FJ, Howie A (2002) Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys Rev B 65:115418ADSCrossRefGoogle Scholar
  154. 154.
    Zhao J, Pinchuk AO, McMahon JM, Li S, Ausman LK, Atkinson AL, Schatz GC (2008) Methods for describing the electromagnetic properties of silver and gold nanoparticles. Acc Chem Res 41:1710CrossRefGoogle Scholar
  155. 155.
    Barnes WL (2009) Comparing experiments and theory in plasmonics. J Opt A Pure Appl Opt 11:114002ADSCrossRefGoogle Scholar
  156. 156.
    Karamehmedovic M, Schuh R, Schmidt V, Wriedt T, Matyssek C, Hergert W, Stalmashonak A, Seifert G, Stranik O (2011) Comparison of numerical methods in near-field computation for metallic nanoparticles. Opt Expr 19:8939CrossRefGoogle Scholar
  157. 157.
    Khoury CG, Norton SJ, Vo-Dinh T (2009) Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method. ACS Nano 3:2776CrossRefGoogle Scholar
  158. 158.
    Zeman EJ, Schatz GC (1987) An accurate electromagnetic theory study enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In Zn and Cd. J Phys Chem 91:634CrossRefGoogle Scholar
  159. 159.
    Kuwata H, Tamaru H, Esumi K, Miyano K (2003) Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation. Appl Phys Lett 83:4625ADSCrossRefGoogle Scholar
  160. 160.
    Moroz A (2009) Depolarization field of spheroidal particles. J Opt Soc Am B 26:517MathSciNetADSCrossRefGoogle Scholar
  161. 161.
    Golovan LA, Zabotnov SV, Timoshenko VY, Kashkarov PK (2009) Consideration for the dynamic depolarization in the effective-medium model for description of optical properties for anisotropic nanostructured semiconductors. Semiconductors 43:218ADSCrossRefGoogle Scholar
  162. 162.
    Lee K-S, El-Sayed MA (2005) Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J Phys Chem B 109:20331CrossRefGoogle Scholar
  163. 163.
    Kooij ES, Poelsema B (2006) Shape and size effects in the optical properties of metallic nanorods. Phys Chem Chem Phys 8:3349CrossRefGoogle Scholar
  164. 164.
    Khlebtsov BN, Khlebtsov NG (2007) Multipole plasmons in metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment. J Phys Chem C 111:11516CrossRefGoogle Scholar
  165. 165.
    Jain PK, Lee K-S, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different sizes, shape and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238CrossRefGoogle Scholar
  166. 166.
    Bryant GW, Garcia de Abajo FJ, Aizpurua J (2008) Mapping the plasmon resonances of metallic nanoantennas. Nano Lett 8:631ADSCrossRefGoogle Scholar
  167. 167.
    Encina ER, Coronado EA (2007) Resonance conditions for multipole plasmon excitations in noble metal nanorods. J Phys Chem C 111:16796CrossRefGoogle Scholar
  168. 168.
    Encina ER, Coronado EA (2008) Plasmonic nanoantennas: angular scattering properties of multipole resonances in noble metal nanorods. J Phys Chem C 112:9586CrossRefGoogle Scholar
  169. 169.
    Brioude A, Jiang XC, Pileni MP (2005) Optical properties of gold nanorods: DDA simulations supported by experiments. J Phys Chem B 109:13138CrossRefGoogle Scholar
  170. 170.
    Payne EK, Shuford KL, Park S, Schatz GC, Mirkin CA (2006) Multipole plasmon resonances in gold nanorods. J Phys Chem B 110:2150CrossRefGoogle Scholar
  171. 171.
    Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O, Mulvaney P (2002) Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 88:077402ADSCrossRefGoogle Scholar
  172. 172.
    Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24:5233CrossRefGoogle Scholar
  173. 173.
    Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3806CrossRefGoogle Scholar
  174. 174.
    Rodríguez-Fernández J, Novo C, Myroshnychenko V, Funston AM, Sánchez-Iglesias A, Pastoriza-Santos J, Pérez-Juste J, Garcia de Abajo FJ, Liz-Marzán LM, Mulvaney P (2009) Spectroscopy, imaging and modelling of individual gold decahedra. J Phys Chem C 113:18623CrossRefGoogle Scholar
  175. 175.
    Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y (2005) Localized plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034ADSCrossRefGoogle Scholar
  176. 176.
    Hao E, Bailey RC, Schatz GC, Hupp JT, Li S (2004) Synthesis and optical properties of “branched” gold nanocrystals. Nano Lett 4:327ADSCrossRefGoogle Scholar
  177. 177.
    Romero I, Aizpurua J, Bryant GW, Garcia de Abajo FJ (2006) Plasmon in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt Expr 14:9988ADSCrossRefGoogle Scholar
  178. 178.
    Aizpurua J, Hanarp P, Sutherland DS, Käll M, Bryant GW, García de Abajo FJ (2003) Optical properties of gold nanorings. Phys Rev Lett 90:057401ADSCrossRefGoogle Scholar
  179. 179.
    Jain PK, El-Sayed MA (2007) Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells. Nano Lett 7:2854ADSCrossRefGoogle Scholar
  180. 180.
    Wang H, Brandl DW, Le F, Nordlander P, Halas NJ (2006) Nanorice: a hybrid plasmonic nanostructure. Nano Lett 6:827ADSCrossRefGoogle Scholar
  181. 181.
    Hooshmand N, Jain PK, El-Sayed MA (2011) Plasmonic spheroidal metal nanoshells showing larger tunability than their spherical counterparts: an effect of enhanced plasmon coupling. J Phys Chem Lett 2:374CrossRefGoogle Scholar
  182. 182.
    Mertz J (2000) Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description. J Opt Soc Am A 17:1906CrossRefGoogle Scholar
  183. 183.
    Schmid M, Klenk R, Lux-Steiner MC, Topic M, Krc J (2011) Modeling plasmonic scattering combined with thin-film optics. Nanotechnology 22:025204ADSCrossRefGoogle Scholar
  184. 184.
    Pillai S, Catchpole KR, Trupke T, Greene MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105ADSCrossRefGoogle Scholar
  185. 185.
    Videen G (1991) Light scattering from a sphere on or near a surface. J Opt Soc Am A 8:483ADSCrossRefGoogle Scholar
  186. 186.
    Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113ADSCrossRefGoogle Scholar
  187. 187.
    Beck FJ, Polman A, Catchpole KR (2009) J Appl Phys 105:114310ADSCrossRefGoogle Scholar
  188. 188.
    Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Expr 16:21793ADSCrossRefGoogle Scholar
  189. 189.
    Vial A, Laroche T (2007) Description of dispersion properties of metal by means of the critical points model and application to the study of resonant structures using the FDTD method. J Phys D Appl Phys 40:7152ADSCrossRefGoogle Scholar
  190. 190.
    Dahmen C, Schmidt B, von Plessen G (2007) Radiation damping in metal nanoparticle pairs. Nano Lett 7:318ADSCrossRefGoogle Scholar
  191. 191.
    Zhao LL, Lance Kelly KL, Schatz GC (2003) The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width. J Phys Chem B 107:7343CrossRefGoogle Scholar
  192. 192.
    Haynes CL, McFarland AD, Zhao L, Van Duyne RP, Schatz GC, Gunnarsson L, Prikulis J, Kasemo B, Käll M (2003) Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B 107:7337CrossRefGoogle Scholar
  193. 193.
    Zou S, Janel N, Schatz GC (2004) Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J Chem Phys 120:10871ADSCrossRefGoogle Scholar
  194. 194.
    Auguié B, Barnes WL (2008) Collective resonances of gold nanoparticle arrays. Phys Rev Lett 101:1439021CrossRefGoogle Scholar
  195. 195.
    Auguié B, Bendaña XM, Barnes WL, Garcia de Abajo FJ (2010) Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate. Phys Rev B 82:155447ADSCrossRefGoogle Scholar
  196. 196.
    Hicks EM, Zou S, Schatz GC, Spears KG, Van Duyne RP (2005) Controlling plasmon line shapes trough diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett 5:1065ADSCrossRefGoogle Scholar
  197. 197.
    Zou S, Schatz GC (2006) Theoretical studies of plasmon resonances in one-dimensional nanoparticle chains: narrow lineshapes with tunable widths. Nanotechnology 17:2813ADSCrossRefGoogle Scholar
  198. 198.
    Ruppin R (1982) Surface modes of two spheres. Phys Rev B 26:3441ADSCrossRefGoogle Scholar
  199. 199.
    Reinhard BM, Siu M, Agarwal H, Alivisatos AP, Liphardt J (2005) Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. Nano Lett 5:2246ADSCrossRefGoogle Scholar
  200. 200.
    Grésillon S, Aigouy L, Boccara AC, Rivoal JC, Quelin X, Desmarest C, Gadenne P, Shubin VA, Sarychev AK, Shalaev VM (1999) Experimental observation of localized optical excitations in random metal-dielectric film. Phys Rev Lett 82:4520ADSCrossRefGoogle Scholar
  201. 201.
    Del Coso R, Requejo-Isidro J, Solis J, Gonzalo J, Afonso CN (2004) Third order nonlinear susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold. J Appl Phys 95:2755ADSCrossRefGoogle Scholar
  202. 202.
    Tamaru H, Kuwata H, Miyazaki HT, Miyano K (2002) Resonant light scattering from individual Ag nanoparticles and particle pairs. Appl Phys Lett 80:1826ADSCrossRefGoogle Scholar
  203. 203.
    Su K-H, Wei Q-H, Zhang X, Mock JJ, Smith DR, Schultz S (2003) Interparticle coupling effects on plasmon resonances on nanogold particles. Nano Lett 3:1087ADSCrossRefGoogle Scholar
  204. 204.
    Atay T, Song J-H, Nurmikko A (2004) Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime. Nano Lett 4:1627ADSCrossRefGoogle Scholar
  205. 205.
    Marhaba S, Bachelier G, Bonnet C, Broyer M, Cottancin E, Grillet N, Lermé J, Vialle J-L, Pellarin M (2009) Surface plasmon resonance of gold nanodimers near the conductive contact limit. J Phys Chem C 113:4349CrossRefGoogle Scholar
  206. 206.
    Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4:899ADSCrossRefGoogle Scholar
  207. 207.
    Brown LV, Sobhani H, Lassiter JB, Nordlander P, Halas NJ (2010) Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano 4:819CrossRefGoogle Scholar
  208. 208.
    Willingham B, Brandt DW, Nordlander P (2008) Plasmon hybridization in nanorods dimers. Appl Phys B 93:209ADSCrossRefGoogle Scholar
  209. 209.
    Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419ADSCrossRefGoogle Scholar
  210. 210.
    Prodan E, Nordlander P (2004) Plasmon hybridization in spherical nanoparticles. J Chem Phys 120:5444ADSCrossRefGoogle Scholar
  211. 211.
    Nordlander P, Prodan E (2004) Plasmon hybridization in nanoparticles near metallic surfaces. Nano Lett 4:2209ADSCrossRefGoogle Scholar
  212. 212.
    Halas NJ, Lal S, Chang W-S, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913CrossRefGoogle Scholar
  213. 213.
    Jain PK, Eustis S, El-Sayed MA (2006) Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B 110:18243CrossRefGoogle Scholar
  214. 214.
    Funston AM, Novo C, Davis TJ, Mulvaney P (2009) Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett 9:1651ADSCrossRefGoogle Scholar
  215. 215.
    Shao L, Woo KC, Chen H, Wang J, Lin H-Q (2010) Angle- and energy-resolved plasmon coupling in gold nanorods dimers. ACS Nano 4:3053CrossRefGoogle Scholar
  216. 216.
    Slaughter LS, Wu Y, Willingham BA, Nordlander P, Link S (2010) Effects of symmetry breaking and conductive contact on the plasmon coupling in gold nanorods dimers. ACS Nano 4:4657CrossRefGoogle Scholar
  217. 217.
    Marty R, Arbouet A, Girard C, Margueritat J, Gonzalo J, Afonso CN (2007) Sculpting nanometer-sized landscape with plasmonic nanocolumns. J Chem Phys 131:224707ADSCrossRefGoogle Scholar
  218. 218.
    Jain PK, El-Sayed MA (2008) Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers. J Phys Chem C 112:4954CrossRefGoogle Scholar
  219. 219.
    Jain PK, Huang W, El-Sayed MA (2007) On the universal scaling behaviour of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7:2080ADSCrossRefGoogle Scholar
  220. 220.
    Dridi M, Vial A (2011) Improved description of the plasmon resonance wavelength shift in metallic nanoparticle pairs. Plasmonics Published onlineGoogle Scholar
  221. 221.
    Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82:2257ADSCrossRefGoogle Scholar
  222. 222.
    Luk’Yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonances in plasmonic nanostructures and metamaterials. Nature Mat 9:707ADSCrossRefGoogle Scholar
  223. 223.
    Lassiter JB, Sobhani H, Knight MW, Mielczarek WS, Nordlander P, Halas NJ (2012) Designing and deconstructing the Fano lineshape in plasmonic nanoclusters. Nano Lett 12:1058ADSCrossRefGoogle Scholar
  224. 224.
    Rahmani M, Lei DY, Giannini V, Lukiyanchuk B, Ranjbar M, Liew TYF, Hong M, Maier SA (2012) Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape. Nano Lett 12:2101ADSCrossRefGoogle Scholar
  225. 225.
    Wu C, Khanikaev AB, Adato R, Arju N, Yanik AA, Altug H, Shvets G (2012) Fano-resonant asymetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat Mater 11:69ADSCrossRefGoogle Scholar
  226. 226.
    Wen F, Ye J, Liu N, Van Dorpe P, Nordlander P, Halas NJ (2012) Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles. Nano Lett 12(9):5020–5026ADSCrossRefGoogle Scholar
  227. 227.
    Palpant B (2006) Third order nonlinear optical response of metal nanoparticles, in nonlinear optical properties of matter. Springer, DordrechtGoogle Scholar
  228. 228.
    Canfield BK, Husu H, Laukkanen J, Bai B, Kuittinen M, Turunen J, Kauranen M (2007) Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers. Nano Lett 7:1251ADSCrossRefGoogle Scholar
  229. 229.
    Del Fatti N, Vallée F, Flytzanis C, Hamanaka Y, Nakamura A (2000) Electron dynamics and surface plasmon resonance non-linearities in metal nanoparticles. Chem Phys 251:215CrossRefGoogle Scholar
  230. 230.
    Link S, El Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410CrossRefGoogle Scholar
  231. 231.
    Lamprecht B, Leitner A, Aussenegg FR (1999) SHG studies of plasmon dephasing in nanoparticles. Appl Phys B 68:419ADSCrossRefGoogle Scholar
  232. 232.
    Palpant B, Portales H, Saviot L, Lermé J, Prevel B, Pellarin M, Duval E, Perez A, Broyer M (1999) Quadrupolar vibrational mode of silver clusters from plasmon-assisted Raman scattering. Phys Rev B 60:17107ADSCrossRefGoogle Scholar
  233. 233.
    García de Abajo FJ (2008) Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J Phys Chem C 112:17983CrossRefGoogle Scholar
  234. 234.
    McMahon JM, Gray SK, Schatz GC (2010) Calculating nonlocal optical properties of structures with arbitrary shape. Phys Rev B 82:035423ADSCrossRefGoogle Scholar
  235. 235.
    Morton SM, Silverstein DW, Jensen L (2011) Theoretical studies of plasmonics using electronic structure methods. Chem Rev 111:3962CrossRefGoogle Scholar
  236. 236.
    Palpant B, Prével B, Lermé J, Cottancin E, Pellarin M, Treilleux M, Perez A, Vialle JL, Broyer M (1998) Optical properties of gold clusters in the size range 2-4 nm. Phys Rev B 57:1963ADSCrossRefGoogle Scholar
  237. 237.
    Prodan E, Nordlander P, Halas NJ (2003) Electronic structure and optical properties of gold nanoshells. Nano Lett 3:1411ADSCrossRefGoogle Scholar
  238. 238.
    Zuloaga J, Prodan E, Nordlander P (2010) Quantum plasmonics: optical properties and tunability of metallic nanorods. ACS Nano 4:5269CrossRefGoogle Scholar
  239. 239.
    Zuloaga J, Prodan E, Nordlander P (2009) Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett 9:887ADSCrossRefGoogle Scholar
  240. 240.
    Blaber MG, Arnold MD, Ford MJ (2010) A review of the optical properties of alloys and intermetallics for plasmonics. J Phys Condens Matter 22:143201ADSCrossRefGoogle Scholar
  241. 241.
    Blaber MG, Arnold MD, Ford MJ (2010) Designing materials for plasmonic systems: the alkali-noble intermetallics. J Phys Condens Matter 22:095501ADSCrossRefGoogle Scholar
  242. 242.
    Zoric I, Zach M, Kasemo B, Langhammer C (2011) Gold, platinum and aluminium nanodisk plasmons: material independence, subradiance and damping mechanisms. ACS Nano 5:2535CrossRefGoogle Scholar
  243. 243.
    Pakizeh T, Langhammer C, Zoric I, Apell P, Käll M (2009) Intrinsic Fano interference of localized plasmons in Pd nanoparticles. Nano Lett 9:882ADSCrossRefGoogle Scholar
  244. 244.
    Cortie MB, Mc Donagh AM (2011) Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem Rev 111:3713CrossRefGoogle Scholar
  245. 245.
    Bachelier G, Russier-Antoine I, Jonin C, Del Fatti N, Vallée F, Brevet PF (2008) Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles. Phys Rev Lett 101:197401ADSCrossRefGoogle Scholar
  246. 246.
    Chen F, Alemu N, Johnston RL (2011) Collective plasmon modes in a compositionally asymmetric nanoparticle dimer. AIP Adv 1:032134ADSCrossRefGoogle Scholar
  247. 247.
    Peña-Rodriguez O, Pal U, Campoy-Quiles M, Rodríguez-Fernández L, Garriga M, Alonso MI (2011) Enhanced Fano resonances in asymmetrical Au:Ag heterodimers. J Phys Chem C 115:6410CrossRefGoogle Scholar
  248. 248.
    Antosiewicz T, Apell SP, Wadell C, Langhammer C (2012) Absorption enhancement in lossy transition metal elements of plasmonic nanosandwiches. J Phys Chem C 116:20522CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Instituto de Optica, CSICMadridSpain

Personalised recommendations