Advertisement

Size-Dependent Optical Properties of Metallic Nanostructures

  • Lucía B. Scaffardi
  • Daniel C. Schinca
  • Marcelo Lester
  • Fabián A. Videla
  • Jesica M. J. Santillán
  • Ricardo M. Abraham Ekeroth
Chapter

Abstract

Metallic nanostructures are a key component of current and future nanotechnology devices since their individual properties convey the appropriate characteristics for applications in several fields of science and technology. At the nanoscale size, optical properties of metal structures depend not only on the type of material but also on the dimensions and geometry of the structure, suggesting the possibility of tuning optical resonances through appropriate engineering. In this chapter, we will describe methods for calculation of size-dependent optical properties of metal nanostructures and show the successful use of extinction spectroscopy technique to determine the size of nanoparticles (Nps).

Keywords

Dielectric Function Interband Transition Extinction Spectrum Constitutive Parameter Electromagnetic Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partially financed by Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET (Grants PIP 0394 and PIP 0145), and by Facultad de Ingeniería de Universidad Nacional de La Plata (Grant 11/I151). LBS and ML belong to CONICET, DCS and FAV belong to the Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICBA), Argentina, and JMJS and MRA are CONICET fellowship holders.

References

  1. 1.
    Yogeswaran U, Chen S-M (2008) A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 8:290–313Google Scholar
  2. 2.
    Halas NJ, Lal S, Chang W-S, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructure. Chem Rev 111:3913–3961Google Scholar
  3. 3.
    Hirsch L et al (2006) Metal nanoshells. Ann Biomed Eng 34:15–22Google Scholar
  4. 4.
    Giannini V, Fernández-Domínguez AI, Heck SC, Maier SA (2011) Plasmonic nanoantennas: fundamentals and their Use in controllingthe radiative properties of nanoemitters. Chem Rev 111:3888–3912Google Scholar
  5. 5.
    Brambilla G (2010) Optical fibre nanowires and microwires: a review. J Opt 12:043001, 1–19ADSGoogle Scholar
  6. 6.
    Macwan DP, Dave PN, Chaturvedi S (2011) A review on nano-TiO2 sol–gel type syntheses and its applications. J Mater Sci 46:3669–3686ADSGoogle Scholar
  7. 7.
    Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1:13–28Google Scholar
  8. 8.
    Wang W, Yang Q, Fan F, Hongxing X, Wang ZL (2011) Light propagation in curved silver nanowire plasmonic waveguides. Nano Lett 11:1603–1608ADSGoogle Scholar
  9. 9.
    Ma L-C, Zhang Y, Zhang J-M, Ke-Wei X (2011) First-principles study on structural and electronic properties of copper nanowire encapsulated into GaN nanotube. Physica B 406:3502–3507ADSGoogle Scholar
  10. 10.
    Long Y-Z, Li M-M, Changzhi G, Wan M, Duvail J-L, Liu Z, Fan Z (2011) Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog Polym Sci 36:1415–1442Google Scholar
  11. 11.
    Barnard ES, Pala RA, Brongersma ML (2011) Photocurrent mapping of near-field optical antenna resonances. Nat Nanotechnol 6:588–593ADSGoogle Scholar
  12. 12.
    Makino K, Tominaga J, Hase M (2011) Ultrafast optical manipulation of atomic arrangements in chalcogenide alloy memory materials. Opt Express 19:1260–1270ADSGoogle Scholar
  13. 13.
    Alekseeva AV, Bogatyrev VA, Dykman LA, Khlebtsov BN, Trachuk LA, Melnikov AG, Khlebtsov NG (2005) Preparation and optical scattering characterization of gold nanorods and their application to a dot-immunogold assay. Appl Opt 49:6285–6295ADSGoogle Scholar
  14. 14.
    Encina ER, Coronado EA (2007) Resonance conditions for multipole plasmon excitations in noble metal nanorods. J Phys Chem C 111(45):16796–16801Google Scholar
  15. 15.
    Perassi EM, Hernandez-Garrido JC, Moreno MS, Encina ER, Coronado EA, Midgley PA (2010) Using highly accurate 3D nanometrology to model the optical properties of highly irregular nanoparticles: a powerful tool for rational design of plasmonic devices. Nano Lett 10:2097–2104ADSGoogle Scholar
  16. 16.
    Scaffardi LB, Pellegri N, de Sanctis O, Tocho LO (2005) Sizing gold nanoparticles by optical extinction spectroscopy. Nanotechnology 16:158–163ADSGoogle Scholar
  17. 17.
    Mahmoud MA, Snyder B, El-Sayed MA (2010) Surface plasmon fields and coupling in the hollow gold nanoparticles and surface-enhanced Raman spectroscopy. Theory and experiment. J Phys Chem C 114:7436–7443Google Scholar
  18. 18.
    Ferrara MA, Rendina I, Basu SN, Dal Negro L, Sirleto L (2012) Raman amplifier based on amorphous silicon nanoparticles. Int J Photoenergy 2012:254946, 1–5Google Scholar
  19. 19.
    Eustis S, El-Sayed MA (2006) Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum. J Appl Phys 100:044324, 1–7ADSGoogle Scholar
  20. 20.
    Jian Z, Junwu Z, Yongchang W (2004) Influence of surface charge density on the plasmon resonance modes in gold nanoellipsoid. Physica B 353:331–335ADSGoogle Scholar
  21. 21.
    Zhu J (2005) Shape dependent full width at half maximum of the absorption band in gold nanorods. Phys Lett A 339:466–471ADSGoogle Scholar
  22. 22.
    Khlebtsov B, Khanadeev V, Pylaev T, Khlebtsov NA (2011) New T-matrix solvable model for nanorods: TEM-based ensemble simulations supported by experiments. J Phys Chem C 115:6317–6323Google Scholar
  23. 23.
    Encina ER, Perassi EM, Coronado EA (2009) Near-field enhancement of multipole plasmon resonances in Ag and Au nanowires. J Phys Chem A 113:4489–4497Google Scholar
  24. 24.
    Pavlovic G, Malpuech G, Gippius NA (2010) Dispersion and polarization conversion of whispering gallery modes in nanowires. Phys RevB 82:195328, 1–8ADSGoogle Scholar
  25. 25.
    Scaffardi LB, Lester M, Skigin D, Tocho JO (2007) Optical extinction spectroscopy used to characterize metallic nanowires. Nanotechnology 18:315402, 1–8Google Scholar
  26. 26.
    Brambilla G (2010) Accurate 3D nanometrology to model the optical properties of highly irregular nanoparticles: a powerful tool for rational design of plasmonic devices. Nano Lett 10:2097–2104Google Scholar
  27. 27.
    Kottmann JP, Martin OJF, Smith DR, Schultz S (2000) Field polarization and polarization charge distributions in plasmon resonant particles. New J Phys 2:271–279Google Scholar
  28. 28.
    Scaffardi L, Tocho JO, Yebrin L, Cantera C (1996) Sizing particles used in the leather industry by light scattering. Opt Eng 35(1):52–56ADSGoogle Scholar
  29. 29.
    Garcés Vernier I, Sotolongo O, Hernández MP, Scaffardi L, García-Ramos JV, Rivas L (2000) Determination of particle size distribution of particles on aerosols and suspensions by ultraviolet–visible-near infrared absorbance measurements. A new procedure for absorbing particles. Phys Status Solid B 220:583–586ADSGoogle Scholar
  30. 30.
    Scaffardi LB, Tocho JO (2006) Size dependence of refractive index of gold nanoparticles. Nanotechnology 17:1309–1315ADSGoogle Scholar
  31. 31.
    Scaffardi LB, Lester M, Skigin D, Tocho JO (2007) Optical extinction spectroscopy used to characterize metallic nanowires. Nanotechnology 18:315402–315410Google Scholar
  32. 32.
    Scaffardi LB, Tocho JO (2008) Absorption spectra of tiny gold and silver objects. J Luminisc 128(5–6):828–830Google Scholar
  33. 33.
    Torchia GA, Scaffardi LB, Méndez C, Moreno P, Tocho JO, Roso L (2008) Optical extinction for determining size distribution of gold nanoparticles fabricated by ultrashort pulsed laser ablation. Appl Phys A Mater Sci Process 93(4):967–971ADSGoogle Scholar
  34. 34.
    Roldán MV, Scaffardi LB, de Sanctis O, Pellegri N (2008) Optical properties and extinction spectroscopy to characterize the synthesis of amine capped silver nanoparticles. Mater Chem Phys 112:984–990Google Scholar
  35. 35.
    Schinca DC, Scaffardi LB (2008) Core and shell sizing of small silver coated nanospheres by optical extinction spectroscopy. Nanotechnology 19:495712–495720Google Scholar
  36. 36.
    Schinca DC, Scaffardi LB, Videla FA, Torchia GA, Moreno P, Roso L (2009) Silver-silver oxide core-shell nanoparticles by femtosecond laser ablation. Characterization by extinction spectroscopy. J Phys D: Appl Phys 42:215102–215111ADSGoogle Scholar
  37. 37.
    Videla FA, Torchia GA, Schinca DC, Scaffardi LB, Moreno P, Méndez C, Roso L, Giovanetti L, Lopez JR (2009) Role of supercontinuum in the fragmentation of colloidal gold nanoparticles in solution. Proc SPIE 7405:74050U-1–74050U-12Google Scholar
  38. 38.
    Videla FA, Torchia GA, Schinca DC, Scaffardi LB, Moreno P, Mendez C, Giovanetti L, Ramallo López J, Roso L (2010) Analysis of the main optical mechanisms responsible for fragmentation of gold nanoparticles by femtosecond laser radiation. J Appl Phys 107:114308-1–114308-8ADSGoogle Scholar
  39. 39.
    Santillán JMJ, Scaffardi LB, Schinca DC, Videla FA (2010) Determination of nanometric Ag2O film thickness by surface plasmon resonance and optical waveguide mode coupling techniques. J Opt 12:045002–045010ADSGoogle Scholar
  40. 40.
    Videla FA, Torchia GA, Schinca DC, Scaffardi LB, Moreno P, Méndez C, Giovanetti LJ, RamalloLopez JM, Roso L (2010) Analysis of the main optical mechanisms responsible for fragmentation of gold nanoparticles by femtosecond laser radiation. Virtual J Sci Technol Ultrafast Sci Sect Photonics 9(7)Google Scholar
  41. 41.
    Santillán JMJ, Scaffardi LB, Schinca DC (2011) Quantitative optical extinction-based parametric method for sizing a single core–shell Ag–Ag2O nanoparticle. J Phys D: Appl Phys 44:105104–105112ADSGoogle Scholar
  42. 42.
    Abraham Ekeroth RM, Lester M, Scaffardi LB, Schinca DC (2011) Metallic nanotubes characterization via surface plasmon excitation. Plasmonics 6(3):435–444Google Scholar
  43. 43.
    Coronado E, Schatz G (2003) Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach. J Chem Phys 7:3926–3934ADSGoogle Scholar
  44. 44.
    Kottmann JP, Martin OJF (2001) Influence of the cross section and the permittivity on the plasmon-resonance spectrum of silver nanowires. Appl Phys B 73:299–304ADSGoogle Scholar
  45. 45.
    Ranjan M, Oates TW, Facsko S, Mller W (2010) Optical properties of silver nanowire arrays with 35 nm periodicity. Opt Lett 35:2576–2578Google Scholar
  46. 46.
    Brack M (1993) The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. Rev Mod Phys 3:677–732ADSGoogle Scholar
  47. 47.
    Bonacic-Koutecky V, Piercarlo Fantucci J, Koutecky J (1991) Quantum chemistry of small clusters of elements of groups Ia, Ib, and IIa: fundamental concepts, predictions, and interpretation of experiments. Chem Rev 91:1035–1108Google Scholar
  48. 48.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  49. 49.
    Lorentz HA (1905) The motion of electrons in metallic bodies. Proc R Acad Sci Amst 7:438, 585, 684Google Scholar
  50. 50.
    (a) Drude P (1900) The theory of metals ions. Phys Zeitsch 1:161; (b) Drude P (1900) Zur elektronentheori der metalles 1 Teil. Ann Phys (Leipzig) 1:566Google Scholar
  51. 51.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinGoogle Scholar
  52. 52.
    Kraus WA, Schatz GC (1983) Plasmon resonance broadening in small metal particles. J Chem Phys 79:6130–6139ADSGoogle Scholar
  53. 53.
    Kraus WA, Schatz GC (1983) Plasmon resonance broadening in spheroidal metal particles. J Chem Phys 99:353–357Google Scholar
  54. 54.
    Doyle WT (1958) Absorption of light by colloids in alkali halide crystals. Phys Rev 111:1097–1077ADSGoogle Scholar
  55. 55.
    (a) Genzel L, Martin TP, Kreibig U (1975) Dielectric function and plasma resonances of small metal particles, Z Physik B 21:339. http://www.springerlink.com/content/j2885x1521060275/; (b) Ruppin R, Yatom H (1976) Size and Shape Effects on the Broadening of the Plasma Resonance Absorption in Metals, Phys Status Solid B 74:647; (c) Wood DM, Ashcroft NW (1982) Quantum size effects in the optical propertiesof small metallic particles, Phys Rev B 25:6255; (d) Apell P, Penn DR (1983) Optical Properties of Small Metal Spheres:surface Effects, Phys Rev Lett 50:1316–1319Google Scholar
  56. 56.
    Granqvist CG, Hunderi O (1977) Optical properties of ultra fine gold particles. Phys Rev B 16:3513–3534ADSGoogle Scholar
  57. 57.
    Palik ED (1985) Handbook of optical constants of solids. Academic, San DiegoGoogle Scholar
  58. 58.
    Johnson PB, Christy RW (1972) Optical constants of noble metals. Phys Rev B 6:4370–4379ADSGoogle Scholar
  59. 59.
    Pinchuk A, von Plessen G, Kreibig U (2004) Influence of interband electronic transitions on the optical absorption in metallic nanoparticles. J Phys D: Appl Phys 37:3133–3139ADSGoogle Scholar
  60. 60.
    Rosei R, Antonangeli F, Grassano UM (1973) d bands position and width in gold from very low temperature thermomodulation measurements. Surf Sci 37:689–699ADSGoogle Scholar
  61. 61.
    Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, CambridgeGoogle Scholar
  62. 62.
    Maier S (2006) Plasmonic: metal nanoetructures for subwavelength photonic devices. IEEE J Sel Top Quantum Electron 12:1214–1220Google Scholar
  63. 63.
    Kreibig U (1970) Kramers kronig analysis of the optical properties of small silver particles. Z Phys 234:307–318ADSGoogle Scholar
  64. 64.
    Kreibig U, Fragstein CV (1969) The limitation of electron mean free path in small silver particles. Z Phys 224:307–323ADSGoogle Scholar
  65. 65.
    Rosei R (1974) Temperature modulation of the optical transitions involving the Fermi surface in Ag: theory. Phys Rev B 10:474–483ADSGoogle Scholar
  66. 66.
    Inouye H, Tanaka K, Tanahashi I, Hirao K (1998) Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticles system. Phys Rev B 57:11334–11340ADSGoogle Scholar
  67. 67.
    Cain W, Shalaev V (2010) Optical metamaterials: fundamental and applications. Springer, HeidelbergGoogle Scholar
  68. 68.
    Santillán JMJ, Videla FA, Scaffardi LB, Schinca DC (2012) Plasmon spectroscopy for subnanometric copper particles: dielectric function and core-shell sizing. Plasmonics 1–8, doi:10.1007/s11468-012-9395-8Google Scholar
  69. 69.
    Logunov SL, Ahmadi TS, El-Sayed MA, Khoury JT, Whetten RL (1997) Electron dynamics of passivated gold nanocrystals probed by subpicosecond transient absorption spectroscopy. J Phys Chem B 101:3713–3719Google Scholar
  70. 70.
    Boyen H-G, Kästle G, Weigl F, Koslowski B et al (2002) Oxidation-resistant gold-55 clusters. Science 30:1533–1536ADSGoogle Scholar
  71. 71.
    van de Hulst HC (1981) Light scattering by small particles. Dover, New YorkGoogle Scholar
  72. 72.
    Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New YorkzbMATHGoogle Scholar
  73. 73.
    Zhao J, Pinchuk AO, McMahon JM, Li S, Ausman LK, Atkinson AL, Schatz GC (2008) Methods for describing the electromagnetic properties of silver and gold nanoparticles. Acc Chem Res 41(12):1710–1720Google Scholar
  74. 74.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677Google Scholar
  75. 75.
    Born M, Wolf E (1999) Principles of optics. Cambridge University Press, CambridgeGoogle Scholar
  76. 76.
    Ishimaru A (1997) Wave propagation and scattering in random media. IEEE Press/Oxford University, New York/OxfordzbMATHGoogle Scholar
  77. 77.
    Straton JA (1941) Electromagnetic theory. Mc Graw-Hills, New YorkGoogle Scholar
  78. 78.
    Raether H (1988) Surface plasmons on smooth and rough surfaces and on grattings, vol 111, Springer tracts in modern physics. Springer, BerlinGoogle Scholar
  79. 79.
    Wokaun AW (1984) Surface enhanced electromagnetic processes. Solid State Phys 38:223–294Google Scholar
  80. 80.
    Pedersen TG, Jung J, Søndergaard T, Pedersen K Nanopar (2011) Nanoparticle plasmon resonances in the near-static limit. Optics Letters 36(5):713–715Google Scholar
  81. 81.
    Purcell EM, Pennypacker CR (1973) Scattering and absorption of light by non-spherical dielectric grains. Astrophys J 186:705ADSGoogle Scholar
  82. 82.
    Miller EK (1994) Time domain modelling in electromagnetics. J Electromagn Waves Appl 8:1125–1172Google Scholar
  83. 83.
    Jerez S, Lara A (2011) A high resolution nonstandard FDTD method for the TM mode of Maxwell’s equations. Math Comput Model 54:1852–1857MathSciNetzbMATHGoogle Scholar
  84. 84.
    Hafner C, Ballist R (1983) The multiple multipole method (MMP). Int J Comput Electr Electron Eng 2:1–7zbMATHGoogle Scholar
  85. 85.
    Pendry JB, MacKinnon A (1992) Calculation of photon dispersion relations. Phys Rev Lett 69:2772–2775ADSGoogle Scholar
  86. 86.
    Khlebtsov B, Khanadeev V, Pylaev T, Khlebtsov N (2011) A new T-matrix solvable model for nanorods: TEM-based ensemble simulations supported by experiments. J Phys Chem C 115:6317–6323Google Scholar
  87. 87.
    (a) Jin J (2002) The finite element method in electromagnetics. Wiley, New York. (b) Nieto-Vesperinas M (1991) Scattering and diffraction in physical optics. Wiley, New York (Chaps 1 and 7)Google Scholar
  88. 88.
    Madrazo A, Nieto-Vesperinas M (1995) Scattering of electromagnetic waves from a cylinder in front of a conducting plane. J Opt Soc Am A 12:1298–1309ADSGoogle Scholar
  89. 89.
    Lester M, Nieto-Vesperinas M (1999) Optical forces on microparticles in an evanescent laser field. Opt Lett 26:936–938ADSGoogle Scholar
  90. 90.
    Lester M, Arias-González JR, Nieto-Vesperinas M (2001) Fundamentals and model of photonic-force microscopy. Opt Lett 26:707–709ADSGoogle Scholar
  91. 91.
    Arias-González de la Aleja JR (2002) Electromagnetic resonances in the light scattering by objects and surfaces. Ph.D. thesis, Universidad Complutense de Madrid, Spain. ISBN: 84-669-1863-9. http://www.ucm.es/BUCM/tesis/fis/ucm-t26131.pdf
  92. 92.
    Abraham Ekeroth RM, Lester M, Scaffardi LB, Schinca DC (2011) Metallic nanotubes characterization via surface plasmon excitation. Plasmonics 6:435–444Google Scholar
  93. 93.
    Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–228Google Scholar
  94. 94.
    Huang X, Neretina S, El-Sayed MA, Nanorods G (2009) From synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910Google Scholar
  95. 95.
    Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901Google Scholar
  96. 96.
    Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826ADSGoogle Scholar
  97. 97.
    Oates TWH, Sugime H, Noda S (2009) Combinatorial surface-enhanced Raman spectroscopy and spectroscopic ellipsometry of silver island films. J Phys Chem C 113:4820–4828Google Scholar
  98. 98.
    Aroca R (2006) Surface-enhanced vibrational spectroscopy. Wiley, HobokenGoogle Scholar
  99. 99.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670ADSGoogle Scholar
  100. 100.
    Emory SR, Nie S (1997) Near-field surface-enhanced Raman spectroscopy on single silver nanoparticles. Anal Chem 69:2631–2635Google Scholar
  101. 101.
    Xu H, Bjerneld EJ, Kall M, Börjesson L (1999) Spectroscopy of single enhanced Raman scattering. Phys Rev Lett 83:4357–4360ADSGoogle Scholar
  102. 102.
    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081Google Scholar
  103. 103.
    Lyon LA, Musick MD, Natan MJ (1998) Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal Chem 70:5177–5183Google Scholar
  104. 104.
    Schultz S, Smith DR, Mock JJ, Schultz DA (2000) Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc Natl Acad Sci USA 97:996–1001ADSGoogle Scholar
  105. 105.
    Sönnichsen C, Geier S, Hecker NE, von Plessen G, Feldmann J, Ditlbacher H, Lamprecht B, Krenn JR, Aussenegg FR, Chan VZ-H, Spatz JP, Möller M (2000) Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl Phys Lett 77:2949–2952ADSGoogle Scholar
  106. 106.
    Specht M, Pedarnig JD, Heckl WM, Hänsch TW (1992) Scanning plasmon near-field microscope. Phys Rev Lett 68:476–479ADSGoogle Scholar
  107. 107.
    Inouye Y, Kawata S (1994) Near-field scanning optical microscope with a metallic probe tip. Opt Lett 19:159–161ADSGoogle Scholar
  108. 108.
    Hecht B, Sick B, Wild UP, Deckert V, Zenobi R, Martin OJF, Pohl DW (2000) Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J Chem Phys 112:7761–7775ADSGoogle Scholar
  109. 109.
    Stöckle RM, Suh YD, Deckert V, Zenobi R (2000) Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett 318:131–136ADSGoogle Scholar
  110. 110.
    Sqalli O, Bernai MP, Hoffmann P, Marquis-Weible F (2000) Improved tip performance for scanning near-field optical microscopy by the attachment of a single gold nanoparticle. Appl Phys Lett 76:2134–2137ADSGoogle Scholar
  111. 111.
    Milner RG, Richards D (2001) The role of tip plasmons in near-field Raman microscopy. J Microsc 202:66–71MathSciNetGoogle Scholar
  112. 112.
    Manjavacas A, García de Abajo FJ (2009) Robust plasmon waveguides in strongly interacting nanowire arrays. Nano Lett 9:1285–1289ADSGoogle Scholar
  113. 113.
    Vogelgesang R, Dorfmüller J, Esteban R, Weitz RT, Dmitriev A, Kern K (2008) Plasmonic nanostructures in apertureless scanning near-field optical microscopy (aSNOM). Phys Status Solid B 245:2255–2260ADSGoogle Scholar
  114. 114.
    Dickson RM, Lyon LA (2000) Unidirectional plasmon propagation in metallic nanowires. J Phys Chem B 104:6095–6098Google Scholar
  115. 115.
    Fang Z, Fan L, Lin C, Zhang D, Meixner AJ, Zhu X (2011) Plasmonic coupling of bow tie antennas with Ag nanowire. Nano Lett 11:1676–1680ADSGoogle Scholar
  116. 116.
    Quinten M, Leitner A, Krenn JR, Aussenegg FR (1998) Electromagnetic energy transport via linear chains of silver nanoparticles. Opt Lett 23:1331–1333ADSGoogle Scholar
  117. 117.
    Krenn JR, Dereux A, Weeber JC, Bourillot E, Lacroute Y, Goudonnet JP (1999) Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles. Phys Rev Lett 82:2590–2593ADSGoogle Scholar
  118. 118.
    Bozhevolnyi SI, Erland J, Leosson K, Skovgaard PMW, Hvam JM (2001) Waveguiding in surface plasmon polariton band gap structures. Phys Rev Lett 86:3008–3011ADSGoogle Scholar
  119. 119.
    Weeber J-C, Dereux A, Girard C, Krenn JR, Goudonnet J-P (1999) Plasmon polaritons of metallic nanowires for controlling submicron propagation of light. Phys Rev B 60:9061–9068ADSGoogle Scholar
  120. 120.
    Lamprecht B, Schider G, Lechner RT, Ditlbacher H, Krenn JR, Leitner A, Aussenegg FR (2000) Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance. Phys Rev Lett 84:4721–4724ADSGoogle Scholar
  121. 121.
    Brongersma ML, Hartman JW, Atwater HA (2000) Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys Rev B 62:R16356–R16359ADSGoogle Scholar
  122. 122.
    Krenn JR, Salerno M, Felidj N, Lamprecht B, Schider G, Leitner A, Aussenegg FR, Weeber JC, Dereux A, Goudonnet JP (2001) Light field propagation by metal micro- and nanostructures. J Microscopy 202:122–128MathSciNetGoogle Scholar
  123. 123.
    Lester M, Skigin D (2007) Coupling of evanescent s-polarized waves to the far field by waveguide modes in metallic arrays. J Opt A Pure Appl Opt 9:81–87ADSGoogle Scholar
  124. 124.
    Skigin D, Letser M (2011) Optical nanoantennas: from comminications to super-resolution. J Nanophotonics 5:050303, 1–3Google Scholar
  125. 125.
    Martin-Moreno L, García-Vidal FJ, Lezec HJ, Pellerin KM, Thio T, Pendry JB, Ebbesen TW (2001) Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett 86:1114–1117ADSGoogle Scholar
  126. 126.
    Lester M, Skigin D (2011) An optical nanoantenna made of plasmonic chain resonators. J Opt 13:035105–0345113ADSGoogle Scholar
  127. 127.
    Barnard ES, Pala RA, Brongersma ML (2011) Photocurrent mapping of near-field optical antenna resonances. Nat Nanotechnol 6:588–593ADSGoogle Scholar
  128. 128.
    Tominaga J, Mihalcea C, Büchel D, Fukuda H, Nakano T, Atoda N, Fuji H, Kikukawa T (2001) Local plasmon photonic transistor. Appl Phys Lett 78:2417–2420ADSGoogle Scholar
  129. 129.
    Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19:409–453Google Scholar
  130. 130.
    Santillán JMJ, Scaffardi LB, Schinca DC (2011) Quantitative optical extinction based parametric method for sizing a single core-shell Ag–Ag2O nanoparticle. J Phys D: Appl Phys 44:105104, 1–8ADSGoogle Scholar
  131. 131.
    Novotny L, van Hulst N (2011) Antennas for light. Nat Photonics 5:83–90ADSGoogle Scholar
  132. 132.
    Silveirinha MG, Alu A, Engheta N (2008) Cloaking mechanism with antiphase plasmonic satellites. Phys Rev B 78:205109–205118ADSGoogle Scholar
  133. 133.
    Moradi A (2008) Plasmon hybridization in metallic nanotubes. J Phys Chem Solid 69:2936–2838ADSGoogle Scholar
  134. 134.
    Jain PK, El-Sayed MA (2007) Universal scaling of plasmon coupling in metal nanoestructures: extension from particles pair to nanoshells. Nano Lett 9:2854–2858ADSGoogle Scholar
  135. 135.
    Park T, Nordlander P (2009) On the nature of the bonding and antibonding metallic film and nanoshell plasmons. Chem Phys Lett 472:228–231ADSGoogle Scholar
  136. 136.
    Zhu J (2007) Theoretical study of the tunable second-harmonic generation (SHG) enhancement factor of gold nanotubes. Nanotechnology 18:225702ADSGoogle Scholar
  137. 137.
    Wu D, Xu X, Liu X (2008) Influence of dielectric core, embedding medium and size on the optical properties of gold nanoshells. Solid State Commun 146:7–11ADSGoogle Scholar
  138. 138.
    Calculations of cross sections in this section were performed with the integrated method outlined in Section 2, extended to cover the case of cylinders coated. For details of the method see [92]Google Scholar
  139. 139.
    Encina E, Coronado E (2010) Plasmon coupling in silver nanosphere pairs. J Phys Chem C 114:3918–3923Google Scholar
  140. 140.
    Link S, Burda C, Nikoobakht B, El-Sayed MA (2000) Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 104(26):6152–6163Google Scholar
  141. 141.
    Mafuné F, Kohno J-y, Takeda Y, Kondow T, Sawabe H (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104(35):8333–8337Google Scholar
  142. 142.
    Mafuné F, Kohno J-y, Takeda Y, Kondow T (2002) Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control. J Phys Chem B 106(31):7575–7577Google Scholar
  143. 143.
    Mafuné F, Kohno J-y, Takeda Y, Kondow T, Sawabe H (2001) Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B 105:5114–5120Google Scholar
  144. 144.
    Mafuné F, Kohno J-y, Takeda Y, Kondow T, Sawabe H (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111–9117Google Scholar
  145. 145.
    Mafuné F, Kohno J-y, Takeda Y, Kondow T (2002) Growth of gold clusters into nanoparticles in a solution following laser-induced fragmentation. J Phys Chem B 106:8555–8561Google Scholar
  146. 146.
    Mafuné F, Kohno J-y, Takeda Y, Kondow T (2001) Dissociation and aggregation of gold nanoparticles under laser irradiation. J Phys Chem B 105:9050–9056Google Scholar
  147. 147.
    Mafuné F, Kohno J-y, Takeda Y, Kondow T (2003) Formation of stable platinum nanoparticles by laser ablation in water. J Phys Chem B 107:4218–4223Google Scholar
  148. 148.
    Chen Y-H, Tseng Y-H, Yeh C-S (2002) Laser-induced alloying Au–Pd and Ag–Pd colloidal mixtures: the formation of dispersed Au/Pd and Ag/Pd nanoparticle. J Mater Chem 12:1419–1422Google Scholar
  149. 149.
    Besner S, Kabashin AV, Meunier M (2006) Fragmentation of colloidal nanoparticles by femtosecond laser-induced supercontinuum generation. Appl Phys Lett 89:233122–233125ADSGoogle Scholar
  150. 150.
    Hahn A, Barcikowski S, Chichkov BN (2008) Influences on nanoparticle. Production during pulsed laser ablation. J Laser Micro/Nanoeng 3(2):73–77Google Scholar
  151. 151.
    Pyatenko A, Shimokawa K, Yamaguchi M, Nishimura O, Suzuki M (2004) Synthesis of silver nanoparticles by laser ablation in pure water. Appl Phys A 79:803–806ADSGoogle Scholar
  152. 152.
    Novo C, Funston AM, Mulvaney P (2008) Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat Nanotechnol 3:598–602Google Scholar
  153. 153.
    Anker JN, Paige Hall W, Lyandres O, Shah N, Zhao J, Van Duyne R (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453ADSGoogle Scholar
  154. 154.
    Alù A, Young M, Engheta N (2008) Design of nanofilter for optical nanocircuits. Phys Rev B 77:144107–144119ADSGoogle Scholar
  155. 155.
    Cao L, Fan P, Vasudev AP, White JS, Yu Z, Cai W, Schuller JA, Fan S, Brongersma ML (2010) Semiconductor nanowire optical antenna solar absorbers. Nano Lett 10:439–445ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lucía B. Scaffardi
    • 1
    • 2
  • Daniel C. Schinca
    • 1
    • 2
  • Marcelo Lester
    • 3
    • 4
  • Fabián A. Videla
    • 1
    • 2
  • Jesica M. J. Santillán
    • 1
    • 2
  • Ricardo M. Abraham Ekeroth
    • 3
    • 4
  1. 1.Centro de Investigaciones Ópticas (CIOp), CONICET La Plata-CICLa PlataArgentina
  2. 2.Departamento de Ciencias Básicas, Facultad de IngenieríaUniversidad Nacional de La PlataLa PlataArgentina
  3. 3.Grupo de Óptica de Sólidos-Elfo, Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires – Instituto de Física Arroyo SecoFacultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos AiresBuenos AiresArgentina
  4. 4.Consejo Nacional de Investigaciones Científicas y Técnicas CONICETBuenos AiresArgentina

Personalised recommendations