UV-Vis Spectroscopy for Characterization of Metal Nanoparticles Formed from Reduction of Metal Ions During Ultrasonic Irradiation

  • Kenji Okitsu


The reduction processes of metal ions can be used to prepare metal nanoparticles in an aqueous solution, in which UV-Vis spectroscopy can be used as an excellent tool to characterize the properties of metal nanoparticles, in particular the size and shape of the metal nanoparticles and their surface property in the state of the colloidal dispersion system. In addition, UV-Vis spectroscopy enables the amount of precursor metal ions used during the formation of metal nanoparticles to be measured. In this chapter, the sonochemical reduction processes for Pd(II), Au(III), Pt(II), Pt(IV), Ag(I), and MnO 4 are described on the basis of changes in the absorption spectrum during ultrasonic irradiation to understand the sonochemical reduction mechanism of metal ions. In addition, the optical properties of the sonochemically formed metal nanoparticles such as the spherical nanoparticles of Pd, Au, Pt, Ag, MnO2, and Au/Pd and the shape-controlled nanoparticles are reviewed to understand the formation processes during ultrasonic irradiation.


Sodium Dodecyl Sulfate Ultrasonic Irradiation Extinction Spectrum Average Aspect Ratio Increase Irradiation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Polte J, Ahner TT, Delissen F, Sokolov S, Emmerling F, Thünemann AF, Kraehnert R (2010) Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J Am Chem Soc 132(4):1296–1301CrossRefGoogle Scholar
  2. 2.
    Pretzer LA, Nguyen QX, Wong MS (2010) Controlled growth of sub-10 nm gold nanoparticles using carbon monoxide reductant. J Phys Chem C 114(49):21226–21233CrossRefGoogle Scholar
  3. 3.
    Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249(17–18):1870–1901CrossRefGoogle Scholar
  4. 4.
    Fong Y-Y, Visser BR, Gascooke JR, Cowie BCC, Thomsen L, Metha GF, Buntine MA, Harris HH (2011) Photoreduction kinetics of sodium tetrachloroaurate under synchrotron soft X-ray exposure. Langmuir 27(13):8099–8104CrossRefGoogle Scholar
  5. 5.
    Lee YW, Kim M, Han SW (2010) Shaping Pd nanocatalysts through the control of reaction sequence. Chem Commun 46:1535–1537CrossRefGoogle Scholar
  6. 6.
    Belloni J (2006) Nucleation, growth and properties of nanoclusters studied by radiation chemistry: application to catalysis. Catalysis Today 113(3–4):141–156ADSCrossRefGoogle Scholar
  7. 7.
    Okitsu K (2001) Sonochemical synthesis of metal nanoparticles, chapter 5. In: Pankaj, Ashokkumar M (Eds) Theoretical and experimental sonochemistry involving inorganic systems. Springer, Dordrecht, pp 131–150Google Scholar
  8. 8.
    Anandan S, Ashokkumar M (2011) Sonochemical preparation of monometallic, bimetallic and metal-loaded semiconductor nanoparticles, chapter 6. In: Pankaj, Ashokkumar M (Eds) Theoretical and experimental sonochemistry involving inorganic systems. Springer, Dordrecht, pp 151–169Google Scholar
  9. 9.
    Okitsu K, Iwatani M, Nanzai B, Nishimura R, Maeda Y (2009) Sonochemical reduction of permanganate to manganese dioxide: the effects of H2O2 formed in the sonolysis of water on the rates of reduction. Ultrasonics Sonochem 16:387–391CrossRefGoogle Scholar
  10. 10.
    Okitsu K, Mizukoshi Y, Bandow H, Maeda Y, Yamamoto T, Nagata Y (1996) Formation of noble metal particles by ultrasonic irradiation. Ultrason Sonochem 3:S249–S251CrossRefGoogle Scholar
  11. 11.
    Okitsu K, Yue A, Tanabe S, Matsumoto H, Yobiko Y, Yoo Y (2002) Sonolytic control of rate of gold(III) reduction and size of formed gold nanoparticles: relation between reduction rates and sizes of formed nanoparticles. Bull Chem Soc Jpn 75(10):2289–2296CrossRefGoogle Scholar
  12. 12.
    Okitsu K, Suzuki T, Takenaka N, Bandow H, Nishimura R, Maeda Y (2006) Acoustic multi-bubble cavitation in water: a new aspect of the effect of rare gas atmosphere on bubble temperature and its relevance to sonochemistry. J Phys Chem B 110:20081–20084CrossRefGoogle Scholar
  13. 13.
    Tauber A, Mark G, Schuchmann H-P, Von Sonntag C (1999) Sonolysis of tert-butyl alcohol in aqueous solution. J Chem Soc Perkin Trans 2(6):1129–1135Google Scholar
  14. 14.
    Hart EJ, Fischer C-H, Henglein A (1990) Sonolysis of hydrocarbons in aqueous solution. Radiat Phys Chem 36(4):511–516Google Scholar
  15. 15.
    Ashokkumar M, Grieser F (2005) A comparison between multibubble sonoluminescence intensity and the temperature within cavitation bubbles. J Am Chem Soc 127(15):5326–5327CrossRefGoogle Scholar
  16. 16.
    McNamara WB III, Didenko YT, Suslick KS (1999) Sonoluminescence temperatures during multi-bubble cavitation. Nature 401(6755):772–775ADSCrossRefGoogle Scholar
  17. 17.
    Didenko YT, McNamara WB III, Suslick KS (1999) Hot spot conditions during cavitation in water. J Am Chem Soc 121(24):5817–5818CrossRefGoogle Scholar
  18. 18.
    Hilgenfeldt S, Grossmann S, Lohse D (1999) A simple explanation of light emission in sonoluminescence. Nature 398(6726):402–405ADSCrossRefGoogle Scholar
  19. 19.
    Flannigan DJ, Suslick KS (2005) Plasma formation and temperature measurement during single-bubble cavitation. Nature 434(7029):52–55ADSCrossRefGoogle Scholar
  20. 20.
    Young FR (1976) Sonoluminescence form water containing dissolved gases. J Acoust Soc Am 60(1):100–104ADSCrossRefGoogle Scholar
  21. 21.
    Yasui K (2001) Single-bubble sonoluminescence from noble gases. Phys Rev E Stat Nonlin Soft Matter Phys 63(3II):353011–353014MathSciNetGoogle Scholar
  22. 22.
    Koda S, Kimura T, Kondo T, Mitome H (2003) A standard method to calibrate sonochemical efficiency of an individual reaction system. Ultrason Sonochem 10(3):149–156CrossRefGoogle Scholar
  23. 23.
    Asakura Y, Nishida T, Matsuoka T, Koda S (2008) Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors. Ultrason Sonochem 15(3):244–250CrossRefGoogle Scholar
  24. 24.
    Beckett MA, Hua I (2001) Impact of ultrasonic frequency on aqueous sonoluminescence and sonochemistry. J Phys Chem A 105(15):3796–3802CrossRefGoogle Scholar
  25. 25.
    Hung H-M, Hoffmann MR (1999) Kinetics and mechanism of the sonolytic degradation of chlorinated hydrocarbons: frequency effects. J Phys Chem A 103(15):2734–2739CrossRefGoogle Scholar
  26. 26.
    Okitsu K, Ashokkumar M, Grieser F (2005) Sonochemical synthesis of gold nanoparticles: effects of ultrasound frequency. J Phys Chem B 109(44):20673–20675CrossRefGoogle Scholar
  27. 27.
    Li Y, Boone E, El-Sayed MA (2002) Size effects of PVP-Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution. Langmuir 18(12):4921–4925CrossRefGoogle Scholar
  28. 28.
    Semagina N, Renken A, Laub D, Kiwi-Minsker L (2007) Synthesis of monodispersed palladium nanoparticles to study structure sensitivity of solvent-free selective hydrogenation of 2-methyl-3-butyn-2-ol. J Catal 246(2):308–314CrossRefGoogle Scholar
  29. 29.
    Jia C-J, Schüth F (2011) Colloidal metal nanoparticles as a component of designed catalyst. Phys Chem Chem Phys 13(7):2457–2487CrossRefGoogle Scholar
  30. 30.
    Okitsu K, Bandow H, Maeda Y, Nagata Y (1996) Sonochemical preparation of ultrafine palladium particles. Chem Mater 8:315–317CrossRefGoogle Scholar
  31. 31.
    Creighton JA, Eadon DG (1991) Ultraviolet-visible absorption spectra of the colloidal metallic elements. J Chem Soc Faraday Trans 87(24):3881–3891CrossRefGoogle Scholar
  32. 32.
    Okitsu K, Nagaoka S, Tanabe S, Matsumoto H, Mizukoshi Y, Nagata Y (1999) Sonochemical preparation of size-controlled palladium nano-particles on alumina surface. Chem Lett 28:271–272CrossRefGoogle Scholar
  33. 33.
    Okitsu K, Yue A, Tanabe S, Matsumoto H (2002) Formation of palladium nanoclusters on Y-zeolite via a sonochemical process and conventional methods. Bull Chem Soc Jpn 75:449–455CrossRefGoogle Scholar
  34. 34.
    Wittstock A, Zielasek V, Biener J, Friend CM, Bäumer M (2010) Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327(5963):319–322ADSCrossRefGoogle Scholar
  35. 35.
    Ma Z, Dai S (2011) Design of novel structured gold nanocatalysts. ACS Catalysis 1(7):805–818CrossRefGoogle Scholar
  36. 36.
    Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37:2096–2126CrossRefGoogle Scholar
  37. 37.
    Liu C-Y, Tseng W-L (2011) Colorimetric assay for cyanide and cyanogenic glycoside using polysorbate 40-stabilized gold nanoparticles. Chem Commun 47(9):2550–2552CrossRefGoogle Scholar
  38. 38.
    Xie J, Zheng Y, Ying JY (2010) Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+-Au+ interactions. Chem Commun 46(6):961–963CrossRefGoogle Scholar
  39. 39.
    Rodríguez-Lorenzo L, Álvarez-Puebla RA, De Abajo FJG, Liz-Marzán LM (2010) Surface enhanced Raman scattering using star-shaped gold colloidal nanoparticles. J Phys Chem C 114(16):7336–7340CrossRefGoogle Scholar
  40. 40.
    Nagata Y, Mizukoshi Y, Okitsu K, Maeda Y (1996) Sonochemical formation of gold particles in aqueous solution. Radiat Res 146:333–338CrossRefGoogle Scholar
  41. 41.
    Murphy PJ, LaGrange MS (1998) Raman spectroscopy of gold chloro-hydroxy speciation in fluids at ambient temperature and pressure: a re-evaluation of the effects of pH and chloride concentration. Geochim Cosmochim Acta 62(21–22):3515–3526ADSCrossRefGoogle Scholar
  42. 42.
    Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal Chem 79(11):4215–4221CrossRefGoogle Scholar
  43. 43.
    Subhramannia M, Pillai VK (2008) Shape-dependent electrocatalytic activity of platinum nanostructures. J Mater Chem 18(48):5858–5870CrossRefGoogle Scholar
  44. 44.
    Chen A, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev 110(6):3767–3804CrossRefGoogle Scholar
  45. 45.
    Ratnasamy C, Wagner J (2009) Water gas shift catalysis. Catalysis Rev Sci Engin 51(3):325–440CrossRefGoogle Scholar
  46. 46.
    Mizukoshi Y, Oshima R, Maeda Y, Nagata Y (1999) Preparation of platinum nanoparticles by sonochemical reduction of the Pt(II) ion. Langmuir 15(8):2733–2737CrossRefGoogle Scholar
  47. 47.
    Mizukoshi Y, Takagi E, Okuno H, Oshima R, Maeda Y, Nagata Y (2001) Preparation of platinum nanoparticles by sonochemical reduction of the Pt(IV) ions: role of surfactants. Ultrason Sonochem 8(1):1–6CrossRefGoogle Scholar
  48. 48.
    Stamplecoskie KG, Scaiano JC, Tiwari VS, Anis H (2011) Optimal size of silver nanoparticles for surface-enhanced raman spectroscopy. J Phys Chem C 115(5):1403–1409CrossRefGoogle Scholar
  49. 49.
    Shang L, Dong S (2008) Silver nanocluster-based fluorescent sensors for sensitive detection of Cu(II). J Mater Chem 18(39):4636–4640CrossRefGoogle Scholar
  50. 50.
    Guo W, Yuan J, Wang E (2009) Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion. Chem Commun 23:3395–3397CrossRefGoogle Scholar
  51. 51.
    Nagata Y, Watanabe Y, Fujita S, Dohmaru T, Taniguchi S (1992) Formation of colloidal silver in water by ultrasonic irradiation. J Chem Soc Chem Commun 1992:1620–1622CrossRefGoogle Scholar
  52. 52.
    Okitsu K (1993) unpublished resultGoogle Scholar
  53. 53.
    Salkar RA, Jeevanandam P, Aruna ST, Koltypin Y, Gedanken A (1999) The sonochemical preparation of amorphous silver nanoparticles. J Mater Chem 9(6):1333–1335CrossRefGoogle Scholar
  54. 54.
    Zhu Y-P, Wang X-K, Guo W-L, Wang J-G, Wang C (2010) Sonochemical synthesis of silver nanorods by reduction of sliver nitrate in aqueous solution. Ultrason Sonochem 17(4):675–679MathSciNetCrossRefGoogle Scholar
  55. 55.
    Xu H, Suslick KS (2010) Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano 4:3209–3214CrossRefGoogle Scholar
  56. 56.
    Liu H, Zhang X, Wu X, Jiang L, Burda C, Zhu J-J (2011) Rapid sonochemical synthesis of highly luminescent non-toxic AuNCs and Au@AgNCs and Cu (ii) sensing. Chem Commun 47(14):4237–4239CrossRefGoogle Scholar
  57. 57.
    Thackeray MM (1997) Manganese oxides for lithium batteries. Progr Solid State Chem 25(1–2):1–71CrossRefGoogle Scholar
  58. 58.
    Zhu S, Zhou H, Hibino M, Honma I, Ichihara M (2005) Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method. Adv Funct Mater 15(3):381–386CrossRefGoogle Scholar
  59. 59.
    Fischer AE, Pettigrew KA, Rolison DR, Stroud RM, Long JW (2007) Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors. Nano Lett 7(2):281–286ADSCrossRefGoogle Scholar
  60. 60.
    Dong X, Shen W, Gu J, Xiong L, Zhu Y, Li H, Shi J (2006) MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors. J Phys Chem B 110(12):6015–6019CrossRefGoogle Scholar
  61. 61.
    Fujimoto T, Mizukoshi Y, Nagata Y, Maeda Y, Oshima R (2001) Sonolytical preparation of various types of metal nanoparticles in aqueous solution. Scr Mater 44(8–9):2183–2186CrossRefGoogle Scholar
  62. 62.
    Sostaric JZ, Mulvaney P, Grieser F (1995) Sonochemical dissolution of MnO2 colloids. J Chem Soc Faraday Trans 91(17):2843–2846CrossRefGoogle Scholar
  63. 63.
    Mulvaney P, Cooper R, Grieser F, Meisel D (1990) Kinetics of reductive dissolution of colloidal manganese dioxide. J Phys Chem 94(21):8339–8345CrossRefGoogle Scholar
  64. 64.
    Baral S, Lume-Pereira C, Janata E, Henglein A (1985) Chemistry of colloidal manganese dioxide. 2. Reaction with O2 and H2O2 (pulse radiolysis and stop flow studies). J Phys Chem 89(26):5779–5783CrossRefGoogle Scholar
  65. 65.
    Bowman MI (1949) The reaction between potassium permanganate and hydrogen peroxide. J Chem Educ 26(2):103–104CrossRefGoogle Scholar
  66. 66.
    Mizukoshi Y, Okitsu K, Maeda Y, Yamamoto TA, Oshima R, Nagata Y (1997) Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution. J Phys Chem B 101(36):7033–7037CrossRefGoogle Scholar
  67. 67.
    Okitsu K, Murakami M, Tanabe S, Matsumoto H (2000) Catalytic behavior of Au core / Pd shell bimetallic nanoparticles on silica prepared by sonochemical and sol-gel processes. Chem Lett 29(11):1336–1337CrossRefGoogle Scholar
  68. 68.
    Mizukoshi Y, Fujimoto T, Nagata Y, Oshima R, Maeda Y (2000) Characterization and catalytic activity of core-shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method. J Phys Chem B 104(25):6028–6032CrossRefGoogle Scholar
  69. 69.
    Nakagawa T, Nitani H, Tanabe S, Okitsu K, Seino S, Mizukoshi Y, Yamamoto TA (2005) Structural analysis of sonochemically prepared Au/Pd nanoparticles dispersed in porous silica matrix. Ultrason Sonochem 12(4):249–254CrossRefGoogle Scholar
  70. 70.
    Pritchard JC, He O, Ntainjua EN, Piccinini M, Edwards JK, Herzing AA, Carley AF, Moulijn JA, Kiely CJ, Hutchings GJ (2010) The effect of catalyst preparation method on the performance of supported Au–Pd catalysts for the direct synthesis of hydrogen peroxide. Green Chem 12(5):915–921CrossRefGoogle Scholar
  71. 71.
    Xu J, White T, Li P, He C, Yu J, Yuan W, Han Y-F (2010) Biphasic Pd-Au alloy catalyst for low-temperature CO oxidation. J Am Chem Soc 132(30):10398–10406CrossRefGoogle Scholar
  72. 72.
    Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120CrossRefGoogle Scholar
  73. 73.
    Zijlstra P, Chon JWM, Gu M (2009) Five dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459:410–413ADSCrossRefGoogle Scholar
  74. 74.
    Okitsu K, Sharyo K, Nishimura R (2009) One-pot synthesis of gold nanorods by ultrasonic irradiation: the effect of pH on the shape of the gold nanorods and nanoparticles. Langmuir 25(14):7786–7790CrossRefGoogle Scholar
  75. 75.
    Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105(19):4065–4067CrossRefGoogle Scholar
  76. 76.
    Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Graduate School of EngineeringOsaka Prefecture UniversityNaka-ku, Sakai, OsakaJapan

Personalised recommendations