Advertisement

Exploiting the Tunable Optical Response of Metallic Nanoshells

  • Ovidio Peña-Rodríguez
  • Umapada Pal
Chapter

Abstract

Metallic nanoshells, which are plasmonic nanostructures having alternating layers of dielectric and metal, exhibit a notable structural tunability of the plasmon frequencies. This interesting feature has been exploited for a myriad of applications. In this chapter, along with some synthesis approaches, we discuss the origin of the structural tunability and application potentials of these novel nanostructures in fields such as surface-enhanced Raman scattering, medicine, and photonics.

Keywords

Surface Plasmon Resonance Dielectric Function Localize Surface Plasmon Resonance Narrow Band Imaging Fano Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Oldenburg SJ, Jackson JB, Westcott SL, Halas NJ (1999) Infrared extinction properties of gold nanoshells. Appl Phys Lett 75(19):2897–2899ADSCrossRefGoogle Scholar
  2. 2.
    Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288(2–4):243–247ADSCrossRefGoogle Scholar
  3. 3.
    Peña O, Pal U, Rodríguez-Fernández L, Crespo-Sosa A (2008) Linear optical response of metallic nanoshells in different dielectric media. J Opt Soc Am B 25(8):1371–1379ADSCrossRefGoogle Scholar
  4. 4.
    Radloff C, Halas NJ (2004) Plasmonic properties of concentric nanoshells. Nano Lett 4(7):1323–1327ADSCrossRefGoogle Scholar
  5. 5.
    Wu D, Liu X (2009) Tunable near-infrared optical properties of three-layered gold-silica-gold nanoparticles. Appl Phys B Lasers Optics 97(1):193–197ADSCrossRefGoogle Scholar
  6. 6.
    Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422ADSCrossRefGoogle Scholar
  7. 7.
    Schwartzberg AM, Olson TY, Talley CE, Zhang JZ (2006) Synthesis, characterization, and tunable optical properties of hollow gold nanospheres. J Phys Chem B 110(40):19935–19944CrossRefGoogle Scholar
  8. 8.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453ADSCrossRefGoogle Scholar
  9. 9.
    Averitt RD, Sarkar D, Halas NJ (1997) Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth. Phys Rev Lett 78(22):4217ADSCrossRefGoogle Scholar
  10. 10.
    Kalele S, Gosavi SW, Urban J, Kulkarni SK (2006) Nanoshell particles: synthesis, properties and applications. Curr Sci 91(8):1038–1052Google Scholar
  11. 11.
    Sönnichsen C, Alivisatos AP (2005) Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. Nano Lett 5(2):301–304ADSCrossRefGoogle Scholar
  12. 12.
    Raschke G, Brogl S, Susha AS, Rogach AL, Klar TA, Feldmann J, Fieres B, Petkov N, Bein T, Nichtl A, Kurzinger K (2004) Gold nanoshells improve single nanoparticle molecular sensors. Nano Lett 4(10):1853–1857ADSCrossRefGoogle Scholar
  13. 13.
    McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3(8):1057–1062ADSCrossRefGoogle Scholar
  14. 14.
    Xu H, Käll M (2002) Surface-plasmon-enhanced optical forces in silver nanoaggregates. Phys Rev Lett 89(24):246802ADSCrossRefGoogle Scholar
  15. 15.
    Allain LR, Vo-Dinh T (2002) Surface-enhanced Raman scattering detection of the breast cancer susceptibility gene BRCA1 using a silver-coated microarray platform. Anal Chim Acta 469(1):149–154CrossRefGoogle Scholar
  16. 16.
    Hirsch LR, Jackson JB, Lee A, Halas NJ, West JL (2003) A whole blood immunoassay using Gold nanoshells. Anal Chem 75(10):2377–2381CrossRefGoogle Scholar
  17. 17.
    Cui Y, Ren B, Yao J-L, Gu R-A, Tian Z-Q (2006) Synthesis of Agcore-Aushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy. J Phys Chem B 110(9):4002–4006CrossRefGoogle Scholar
  18. 18.
    Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G, Ziegler LD (2005) Characterization of the surface enhanced Raman scattering (SERS) of bacteria. J Phys Chem B 109(1):312–320CrossRefGoogle Scholar
  19. 19.
    Wang H, Brandl DW, Le F, Nordlander P, Halas NJ (2006) Nanorice: a hybrid plasmonic nanostructure. Nano Lett 6(4):827–832ADSCrossRefGoogle Scholar
  20. 20.
    Hooshmand N, Jain PK, El-Sayed MA (2011) Plasmonic spheroidal metal nanoshells showing larger tunability and stronger near fields than their spherical counterparts: an effect of enhanced plasmon coupling. J Phys Chem Lett 2(5):374–378CrossRefGoogle Scholar
  21. 21.
    Wu Y, Nordlander P (2006) Plasmon hybridization in nanoshells with a nonconcentric core. J Chem Phys 125(12):124708ADSCrossRefGoogle Scholar
  22. 22.
    Hu Y, Noelck SJ, Drezek RA (2010) Symmetry breaking in gold-silica-gold multilayer nanoshells. ACS Nano 4(3):1521–1528CrossRefGoogle Scholar
  23. 23.
    Xia X, Liu Y, Backman V, Ameer GA (2006) Engineering sub-100 nm multi-layer nanoshells. Nanotechnology 17(21):5435–5440ADSCrossRefGoogle Scholar
  24. 24.
    Erickson TA, Tunnell JW (2009) Gold nanoshells in biomedical applications. In: Kumar CSSR (eds) Nanomaterials for the life sciences: mixed metal nanomaterials, vol 3. Wiley-VCH, Weinheim, Germany, pp. 1-44.Google Scholar
  25. 25.
    Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9(9):707–715ADSCrossRefGoogle Scholar
  26. 26.
    Sattler KD (2010) Nanomedicine and nanorobotics. CRC Press, Baco RatonGoogle Scholar
  27. 27.
    Zhou HS, Honma I, Komiyama H, Haus JW (1994) Controlled synthesis and quantum-size effect in gold-coated nanoparticles. Phys Rev B 50(16):12052–12056ADSCrossRefGoogle Scholar
  28. 28.
    Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. J Opt Soc Am B 16(10):1824–1832ADSCrossRefGoogle Scholar
  29. 29.
    Averitt RD, Westcott SL, Halas NJ (1998) Ultrafast electron dynamics in gold nanoshells. Phys Rev B 58(16):R10203ADSCrossRefGoogle Scholar
  30. 30.
    Loo C, Lin A, Hirsch L, Lee M-H, Barton J, Halas N, West J, Drezek R (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3(1):33–40Google Scholar
  31. 31.
    Westcott SL, Oldenburg SJ, Lee TR, Halas NJ (1998) Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces. Langmuir 14(19):5396–5401CrossRefGoogle Scholar
  32. 32.
    Westcott SL, Oldenburg SJ, Lee TR, Halas NJ (1999) Construction of simple gold nanoparticle aggregates with controlled plasmon-plasmon interactions. Chem Phys Lett 300(5–6):651–655ADSCrossRefGoogle Scholar
  33. 33.
    Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13(1):11–22CrossRefGoogle Scholar
  34. 34.
    Shi W, Sahoo Y, Swihart MT, Prasad PN (2005) Gold nanoshells on polystyrene cores for control of surface plasmon resonance. Langmuir 21(4):1610–1617CrossRefGoogle Scholar
  35. 35.
    Salgueiriño-Maceira V, Caruso F, Liz-Marzán LM (2003) Coated colloids with tailored optical properties. J Phys Chem B 107(40):10990–10994CrossRefGoogle Scholar
  36. 36.
    Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69CrossRefGoogle Scholar
  37. 37.
    Zhang J, Chen Z, Wang Z, Zhang W, Ming N (2003) Preparation of monodisperse polystyrene spheres in aqueous alcohol system. Mater Lett 57(28):4466–4470CrossRefGoogle Scholar
  38. 38.
    Brinson BE, Lassiter JB, Levin CS, Bardhan R, Mirin N, Halas NJ (2008) Nanoshells made easy: improving Au layer growth on nanoparticle surfaces. Langmuir 24(24):14166–14171CrossRefGoogle Scholar
  39. 39.
    Zhang J, Liu J, Wang S, Zhan P, Wang Z, Ming N (2004) Facile methods to coat polystyrene and silica colloids with metal. Adv Funct Mater 14(11):1089–1096CrossRefGoogle Scholar
  40. 40.
    Lim YT, Park OO, Jung H-T (2003) Gold nanolayer-encapsulated silica particles synthesized by surface seeding and shell growing method: near infrared responsive materials. J Colloid Interface Sci 263(2):449–453CrossRefGoogle Scholar
  41. 41.
    Peceros KE, Xu X, Bulcock SR, Cortie MB (2005) Dipole-dipole plasmon interactions in gold-on-polystyrene composites. J Phys Chem B 109(46):21516–21520CrossRefGoogle Scholar
  42. 42.
    Zhang JH, Zhan P, Wang ZL, Zhang WY, Ming NB (2003) Preparation of monodisperse silica particles with controllable size and shape. J Mater Res 18(03):649–653ADSCrossRefGoogle Scholar
  43. 43.
    Yang W (2003) Improved recursive algorithm for light scattering by a multilayered sphere. Appl Opt 42(9):1710–1720ADSCrossRefGoogle Scholar
  44. 44.
    Mie G (1908) Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann Phys 330(3):377–445CrossRefGoogle Scholar
  45. 45.
    Aden AL, Kerker M (1951) Scattering of electromagnetic waves from two concentric spheres. J Appl Phys 22(10):1242–1246MathSciNetADSzbMATHCrossRefGoogle Scholar
  46. 46.
    Wyatt PJ (1962) Scattering of electromagnetic plane waves from inhomogeneous spherically symmetric objects. Phys Rev 127(5):1837–1843ADSCrossRefGoogle Scholar
  47. 47.
    Wyatt PJ (1964) Scattering of electromagnetic plane waves from inhomogeneous spherically symmetric objects. Phys Rev 134(7AB):AB1–AB1ADSCrossRefGoogle Scholar
  48. 48.
    Bhandari R (1985) Scattering coefficients for a multilayered sphere: analytic expressions and algorithms. Appl Opt 24(13):1960–1967ADSCrossRefGoogle Scholar
  49. 49.
    Wait J (1963) Electromagnetic scattering from a radially inhomogeneous sphere. Appl Sci Res B 10(5):441–450CrossRefGoogle Scholar
  50. 50.
    Wait JR (1955) Scattering of a plane wave from a circular dielectric cylinder at oblique incidence. Can J Phys 33(5):189–195MathSciNetADSzbMATHCrossRefGoogle Scholar
  51. 51.
    Kim CS, Yeh C (1991) Scattering of an obliquely incident wave by a multilayered elliptical lossy dielectric cylinder. Radio Sci 26(5):1165–1176ADSCrossRefGoogle Scholar
  52. 52.
    Asano S, Yamamoto G (1975) Light scattering by a spheroidal particle. Appl Opt 14(1):29–49ADSGoogle Scholar
  53. 53.
    Neeves AE, Birnboim MH (1989) Composite structures for the enhancement of nonlinear-optical susceptibility. J Opt Soc Am B 6(4):787–796ADSCrossRefGoogle Scholar
  54. 54.
    Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley-Interscience, New YorkCrossRefGoogle Scholar
  55. 55.
    Abramowitz M (1965) Handbook of mathematical functions. Dover, New YorkGoogle Scholar
  56. 56.
    Arfken GB, Weber HJ, Harris F (2005) Mathematical methods for physicists, 6th edn. Academic, San DiegozbMATHGoogle Scholar
  57. 57.
    Kai L, Massoli P (1994) Scattering of electromagnetic-plane waves by radially inhomogeneous spheres: a finely stratified sphere model. Appl Opt 33(3):501–511ADSCrossRefGoogle Scholar
  58. 58.
    Prodan E, Nordlander P (2003) Structural tunability of the plasmon resonances in metallic nanoshells. Nano Lett 3(4):543–547ADSCrossRefGoogle Scholar
  59. 59.
    Peña-Rodríguez O, Pal U (2011) Enhanced plasmonic behavior of bimetallic (Ag-Au) multilayered spheres. Nanoscale Res Lett 6(1):279ADSCrossRefGoogle Scholar
  60. 60.
    Peña-Rodríguez O, Pal U (2010) Geometrical tunability of linear optical response of silica-gold double concentric nanoshells. J Phys Chem C 114(10):4414–4417CrossRefGoogle Scholar
  61. 61.
    Mukherjee S, Sobhani H, Lassiter JB, Bardhan R, Nordlander P, Halas NJ (2010) Fanoshells: nanoparticles with built-in Fano resonances. Nano Lett 10(7):2694–2701ADSCrossRefGoogle Scholar
  62. 62.
    Rohde CA, Hasegawa K, Deutsch M (2006) Coherent light scattering from semicontinuous silver nanoshells near the percolation threshold. Phys Rev Lett 96(4):045503ADSCrossRefGoogle Scholar
  63. 63.
    Preston TC, Signorell R (2009) Growth and optical properties of gold nanoshells prior to the formation of a continuous metallic layer. ACS Nano 3(11):3696–3706CrossRefGoogle Scholar
  64. 64.
    Lin Q, Sun Z (2011) Optical extinction properties of aggregated ultrafine silver nanoparticles on silica nanospheres. J Phys Chem C 115(5):1474–1479CrossRefGoogle Scholar
  65. 65.
    Yee K (1966) Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans Antennas Propagation 14(3):302–307ADSzbMATHGoogle Scholar
  66. 66.
    Purcell EM, Pennypacker CR (1973) Scattering and absorption of light by nonspherical dielectric grains. Astrophys J 186:705–714ADSCrossRefGoogle Scholar
  67. 67.
    Draine BT (1988) The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys J 333:848ADSCrossRefGoogle Scholar
  68. 68.
    Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11(4):1491–1499ADSCrossRefGoogle Scholar
  69. 69.
    Halas N (2005) Playing with plasmons: tuning the optical resonant properties of metallic nanoshells. MRS Bull 30(05):362–367CrossRefGoogle Scholar
  70. 70.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677CrossRefGoogle Scholar
  71. 71.
    Hu M, Chen J, Li Z-Y, Au L, Hartland GV, Li X, Marquez M, Xia Y (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35(11):1084CrossRefGoogle Scholar
  72. 72.
    Peña-Rodríguez O, Pal U (2011) Au@Ag core-shell nanoparticles: efficient all-plasmonic Fano-resonance generators. Nanoscale 3(9):3609–3612ADSCrossRefGoogle Scholar
  73. 73.
    Prodan E, Nordlander P, Halas NJ (2003) Electronic structure and optical properties of gold nanoshells. Nano Lett 3(10):1411–1415ADSCrossRefGoogle Scholar
  74. 74.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379ADSCrossRefGoogle Scholar
  75. 75.
    Palik ED (1997) Handbook of optical constants of solids. Academic, New YorkGoogle Scholar
  76. 76.
    Hao F, Nordlander P (2007) Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles. Chem Phys Lett 446(1–3):115–118ADSCrossRefGoogle Scholar
  77. 77.
    Vial A, Grimault A-S, Macías D, Barchiesi D, de la Chapelle ML (2005) Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys Rev B 71(8):085416ADSCrossRefGoogle Scholar
  78. 78.
    See KC, Spicer JB, Brupbacher J, Zhang D, Vargo TG (2005) Modeling interband transitions in silver nanoparticle-fluoropolymer composites. J Phys Chem B 109(7):2693–2698CrossRefGoogle Scholar
  79. 79.
    Lee T-W, Gray S (2005) Subwavelength light bending by metal slit structures. Opt Express 13(24):9652–9659ADSCrossRefGoogle Scholar
  80. 80.
    Moskovits M, Srnová-Sloufova I, Vlckova B (2002) Bimetallic Ag-Au nanoparticles: extracting meaningful optical constants from the surface-plasmon extinction spectrum. J Chem Phys 116(23):10435–10446ADSCrossRefGoogle Scholar
  81. 81.
    Rakic AD, Djurisic AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37(22):5271–5283ADSCrossRefGoogle Scholar
  82. 82.
    Etchegoin PG, Le Ru EC, Meyer M (2006) An analytic model for the optical properties of gold. J Chem Phys 125(16):164705ADSCrossRefGoogle Scholar
  83. 83.
    Etchegoin P, Kircher J, Cardona M (1993) Elasto-optical constants of Si. Phys Rev B 47(16):10292–10303ADSCrossRefGoogle Scholar
  84. 84.
    Campoy-Quiles M, Heliotis G, Xia R, Ariu M, Pintani M, Etchegoin P, Bradley DDC (2005) Ellipsometric characterization of the optical constants of polyfluorene gain media. Adv Funct Mater 15(6):925–933CrossRefGoogle Scholar
  85. 85.
    Leng J, Opsal J, Chu H, Senko M, Aspnes DE (1998) Analytic representations of the dielectric functions of materials for device and structural modeling. Thin Solid Films 313–314:132–136CrossRefGoogle Scholar
  86. 86.
    Noguez C (2005) Optical properties of isolated and supported metal nanoparticles. Opt Mater 27(7):1204–1211ADSCrossRefGoogle Scholar
  87. 87.
    Ashcroft NW, Mermin ND (1976) Solid state physics, 1st edn. Brooks Cole, PhiladelphiaGoogle Scholar
  88. 88.
    Hamblin MR (2006) Mechanisms of low level light therapy. Proc SPIE 6140:614001CrossRefGoogle Scholar
  89. 89.
    Stolik S, Delgado JA, Pérez A, Anasagasti L (2000) Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues. J Photochem Photobiol B Biol 57(2–3):90–93CrossRefGoogle Scholar
  90. 90.
    Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23(3):313–320CrossRefGoogle Scholar
  91. 91.
    Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100(23):13549–13554ADSCrossRefGoogle Scholar
  92. 92.
    Hasegawa K, Rohde C, Deutsch M (2006) Enhanced surface-plasmon resonance absorption in metal-dielectric-metal layered microspheres. Opt Lett 31(8):1136–1138ADSCrossRefGoogle Scholar
  93. 93.
    Oldenburg SJ, Hale GD, Jackson JB, Halas NJ (1999) Light scattering from dipole and quadrupole nanoshell antennas. Appl Phys Lett 75(8):1063ADSCrossRefGoogle Scholar
  94. 94.
    Wang H, Fu K, Drezek RA, Halas NJ (2006) Light scattering from spherical plasmonic nanoantennas: effects of nanoscale roughness. Appl Phys B Lasers Optics 84(1):191–195ADSCrossRefGoogle Scholar
  95. 95.
    Chien W-Y, Szkopek T (2008) Multiple-multipole simulation of optical nearfields in discrete metal nanosphere assemblies. Opt Express 16(3):1820–1835ADSCrossRefGoogle Scholar
  96. 96.
    Jackson JB, Westcott SL, Hirsch LR, West JL, Halas NJ (2003) Controlling the surface enhanced Raman effect via the nanoshell geometry. Appl Phys Lett 82(2):257ADSCrossRefGoogle Scholar
  97. 97.
    Peña Rodríguez O, Pal U (2011) Enhanced plasmonic behavior of incomplete nanoshells: effect of local field irregularities on the far-field optical response. J Phys Chem C. 115(45):22271–22275Google Scholar
  98. 98.
    Oldenburg SJ, Westcott SL, Averitt RD, Halas NJ (1999) Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates. J Chem Phys 111(10):4729ADSCrossRefGoogle Scholar
  99. 99.
    Lu L, Zhang H, Sun G, Xi S, Wang H, Li X, Wang X, Zhao B (2003) Aggregation-based fabrication and assembly of roughened composite metallic nanoshells: application in surface-enhanced raman scattering. Langmuir 19(22):9490–9493CrossRefGoogle Scholar
  100. 100.
    Jackson JB, Halas NJ (2004) Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. Proc Natl Acad Sci USA 101(52):17930–17935ADSCrossRefGoogle Scholar
  101. 101.
    Goude ZE, Leung PT (2007) Surface enhanced Raman scattering from metallic nanoshells with nonlocal dielectric response. Solid State Commun 143(8–9):416–420ADSCrossRefGoogle Scholar
  102. 102.
    Heck KN, Janesko BG, Scuseria GE, Halas NJ, Wong MS (2008) Observing metal-catalyzed chemical reactions in situ using surface-enhanced Raman spectroscopy on Pd-Au nanoshells. J Am Chem Soc 130(49):16592–16600CrossRefGoogle Scholar
  103. 103.
    Yang S, Cai W, Kong L, Lei Y (2010) Surface nanometer-scale patterning in realizing large-scale ordered arrays of metallic nanoshells with well-defined structures and controllable properties. Adv Funct Mater 20(15):2527–2533CrossRefGoogle Scholar
  104. 104.
    Küstner B, Gellner M, Schütz M, Schöppler F, Marx A, Ströbel P, Adam P, Schmuck C, Schlücker S (2009) SERS labels for red laser excitation: silica-encapsulated SAMS on tunable gold/silver nanoshells. Angew Chem Int Ed 48(11):1950–1953CrossRefGoogle Scholar
  105. 105.
    Zhang P, Guo Y (2009) Surface-enhanced Raman scattering inside metal nanoshells. J Am Chem Soc 131(11):3808–3809CrossRefGoogle Scholar
  106. 106.
    Gellner M, Küstner B, Schlücker S (2009) Optical properties and SERS efficiency of tunable gold/silver nanoshells. Vibrat Spectros 50(1):43–47CrossRefGoogle Scholar
  107. 107.
    Ochsenkuhn MA, Jess PRT, Stoquert H, Dholakia K, Campbell CJ (2009) Nanoshells for surface-enhanced Raman spectroscopy in Eukaryotic cells: cellular response and sensor development. ACS Nano 3(11):3613–3621CrossRefGoogle Scholar
  108. 108.
    Barron LD, Buckingham AD (1971) Rayleigh and Raman scattering from optically active molecules. Mol Phys 20(6):1111–1119ADSCrossRefGoogle Scholar
  109. 109.
    Barron LD, Zhu F, Hecht L, Tranter GE, Isaacs NW (2007) Raman optical activity: an incisive probe of molecular chirality and biomolecular structure. J Mol Struct 834–836:7–16CrossRefGoogle Scholar
  110. 110.
    Acevedo R, Lombardini R, Halas NJ, Johnson BR (2009) Plasmonic enhancement of Raman optical activity in molecules near metal nanoshells. J Phys Chem A 113(47):13173–13183CrossRefGoogle Scholar
  111. 111.
    Lombardini R, Acevedo R, Halas NJ, Johnson BR (2010) Plasmonic enhancement of Raman optical activity in molecules near metal nanoshells: theoretical comparison of circular polarization methods. J Phys Chem C 114(16):7390–7400CrossRefGoogle Scholar
  112. 112.
    West JL, Halas NJ (2003) Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng 5(1):285–292CrossRefGoogle Scholar
  113. 113.
    Gu FX, Karnik R, Wang AZ, Alexis F, Levy-Nissenbaum E, Hong S, Langer RS, Farokhzad OC (2007) Targeted nanoparticles for cancer therapy. Nano Today 2(3):14–21CrossRefGoogle Scholar
  114. 114.
    Gobin AM, O’Neal DP, Watkins DM, Halas NJ, Drezek RA, West JL (2005) Near infrared laser-tissue welding using nanoshells as an exogenous absorber. Lasers Surg Med 37(2):123–129CrossRefGoogle Scholar
  115. 115.
    Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248CrossRefGoogle Scholar
  116. 116.
    Sun Y, Xia Y (2002) Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal Chem 74(20):5297–5305CrossRefGoogle Scholar
  117. 117.
    Sershen SR, Westcott SL, Halas NJ, West JL (2000) Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res 51(3):293–298CrossRefGoogle Scholar
  118. 118.
    Fiedler VU, Schwarzmaier H, Eickmeyer F, Müller FP, Schoepp C, Verreet PR (2001) Laser-induced interstitial thermotherapy of liver metastases in an interventional 0.5 Tesla MRI system: technique and first clinical experiences. J Magn Reson Imaging 13(5):729–737CrossRefGoogle Scholar
  119. 119.
    Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103(2):577–644CrossRefGoogle Scholar
  120. 120.
    Melancon MP, Lu W, Yang Z, Zhang R, Cheng Z, Elliot AM, Stafford J, Olson T, Zhang JZ, Li C (2008) In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Ther 7(6):1730–1739CrossRefGoogle Scholar
  121. 121.
    Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Price RE, Hazle JD, Halas NJ, West JL (2002) Targeted photothermal tumor therapy using metal nanoshells. In: Proceedings of the 24th annual conference and the annual fall meeting of the biomedical engineering society EMBS/BMES conference, vol 1, Houston, TX, USA, pp 530–531Google Scholar
  122. 122.
    Stern JM, Stanfield J, Kabbani W, Hsieh J-T, Cadeddu JA (2008) Selective prostate cancer thermal ablation with laser activated gold nanoshells. J Urol 179(2):748–753CrossRefGoogle Scholar
  123. 123.
    O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176CrossRefGoogle Scholar
  124. 124.
    Shetty A, Elliott AM, Schwartz JA, Wang J, Esparza-Coss E, Klumpp S, Taylor B, Hazle JD, Stafford RJ (2008) Use of gold nanoshells to mediate heating induced perfusion changes in prostate tumors. Proc of SPIE 6842:68420SADSCrossRefGoogle Scholar
  125. 125.
    Diagaradjane P, Shetty A, Wang JC, Elliott AM, Schwartz J, Shentu S, Park HC, Deorukhkar A, Stafford RJ, Cho SH, Tunnell JW, Hazle JD, Krishnan S (2008) Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy. Nano Lett 8(5):1492–1500ADSCrossRefGoogle Scholar
  126. 126.
    Diagaradjane P, Shetty A, Wang J, Schwartz J, Park HC, Deorukhkar A, Stafford J, Cho S, Hazle J, Tunnell J, Krishnan S (2008) Modulation of in vivo tumor radiation response via vascular-focused hyperthermia-characterizing gold nanoshells as integrated anti-hypoxic and localized vascular disrupting agents. Int J Radiat Oncol Biol Phys 72(1 (Suppl 1)):S64CrossRefGoogle Scholar
  127. 127.
    Atkinson RL, Zhang M, Diagaradjane P, Peddibhotla S, Contreras A, Hilsenbeck SG, Woodward WA, Krishnan S, Chang JC, Rosen JM (2010) Thermal enhancement with optically activated gold nanoshells sensitizes breast cancer stem cells to radiation therapy. Sci Trans Med 2(55):55ra79CrossRefGoogle Scholar
  128. 128.
    Xie H, Diagaradjane P, Deorukhkar AA, Goins B, Bao A, Phillips WT, Wang Z, Schwartz J, Krishnan S (2011) Integrin αvβ3-targeted gold nanoshells augment tumor vasculature-specific imaging and therapy. Int J Nanomedicine 6(1):259–269CrossRefGoogle Scholar
  129. 129.
    van Vlerken LE, Amiji MM (2006) Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin Drug Deliv 3(2):205–216CrossRefGoogle Scholar
  130. 130.
    Emerich DF, Thanos CG (2006) The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol Eng 23(4):171–184CrossRefGoogle Scholar
  131. 131.
    Sershen SR, Westcott SL, West JL, Halas NJ (2001) An opto-mechanical nanoshell-polymer composite. Appl Phys B Lasers Opt 73(4):379–381ADSCrossRefGoogle Scholar
  132. 132.
    Sershen SR, Halas NJ, West JL (2002) Pulsatile release of insulin via photothermally modulated drug delivery. In: Proceedings of the 24th annual conference and the annual fall meeting of the biomedical engineering society EMBS/BMES conference, vol 1, Houston, TX, USA, pp 490–491Google Scholar
  133. 133.
    Wu G, Mikhailovsky A, Khant HA, Fu C, Chiu W, Zasadzinski JA (2008) Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. J Am Chem Soc 130(26):8175–8177CrossRefGoogle Scholar
  134. 134.
    Bikram M, Gobin AM, Whitmire RE, West JL (2007) Temperature-sensitive hydrogels with SiO2-Au nanoshells for controlled drug delivery. J Control Release 123(3):219–227CrossRefGoogle Scholar
  135. 135.
    Liu H, Chen D, Li L, Liu T, Tan L, Wu X, Tang F (2011) Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew Chem Int Ed 50(4):891–895CrossRefGoogle Scholar
  136. 136.
    Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22(1):47–52CrossRefGoogle Scholar
  137. 137.
    Sun Y, Xia Y (2003) Synthesis of gold nanoshells and their use in sensing applications. In: Unconventional approaches to nanostructures with applications in electronics, photonics, information storage and sensing symposium, vol 776, pp 31–36Google Scholar
  138. 138.
    Tam F, Moran C, Halas N (2004) Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment. J Phys Chem B 108(45):17290–17294CrossRefGoogle Scholar
  139. 139.
    Wang Y, Qian W, Tan Y, Ding S (2008) A label-free biosensor based on gold nanoshell monolayers for monitoring biomolecular interactions in diluted whole blood. Biosens Bioelectron 23(7):1166–1170CrossRefGoogle Scholar
  140. 140.
    Hirsch LR, Halas NJ, West JL (2002) A rapid, near infrared, whole blood immunoassay using metal nanoshells. In: Proceedings of the 24th annual conference and the annual fall meeting of the biomedical engineering society EMBS/BMES Conference, vol 2, Houston, TX, USA, pp 1646–1647Google Scholar
  141. 141.
    Hirsch LR, West JL, Jackson JB, Lee A, Halas NJ (2003) A rapid, whole blood immunoassay using metal nanoshells. Proceedings of the 25th annual international conference of the IEEE, vol 4, Cancun, Mexico, pp 3442–3443Google Scholar
  142. 142.
    Khlebtsov B, Dykman L, Bogatyrev V, Zharov V, Khlebtsov N (2006) A solid-phase dot assay using silica/gold nanoshells. Nanoscale Res Lett 2(1):6–11ADSCrossRefGoogle Scholar
  143. 143.
    Khlebtsov BN, Dykman LA, Bogatyrev VA, Khlebtsov NG (2007) Gold nanoshells as solid-phase dot assay labels. Proc SPIE 6534:65343LADSCrossRefGoogle Scholar
  144. 144.
    Khlebtsov B, Khlebtsov N (2008) Enhanced solid-phase immunoassay using gold nanoshells: effect of nanoparticle optical properties. Nanotechnology 19(43):435703ADSCrossRefGoogle Scholar
  145. 145.
    Ma X, Qian W (2010) Phenolic acid induced growth of gold nanoshells precursor composites and their application in antioxidant capacity assay. Biosens Bioelectron 26(3):1049–1055CrossRefGoogle Scholar
  146. 146.
    Ma X, Li H, Dong J, Qian W (2011) Determination of hydrogen peroxide scavenging activity of phenolic acids by employing gold nanoshells precursor composites as nanoprobes. Food Chem 126(2):698–704CrossRefGoogle Scholar
  147. 147.
    Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R (2003) Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63(9):1999–2004Google Scholar
  148. 148.
    Zaman RT, Diagaradjane P, Wang JC, Schwartz J, Rajaram N, Gill-Sharp KL, Cho SH, Rylander HG, Payne JD, Krishnan S, Tunnell JW (2007) In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy. IEEE J Select Topics Quantum Electron 13(6):1715–1720CrossRefGoogle Scholar
  149. 149.
    Zaman RT, Diagaradjane P, Wang JC, Schwartz J, Rajaram N, Gill-Sharp KL, Cho SH, Rylander HG III, Payne JD, Krishnan S, Tunnell JW (2008) Erratum to In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy. IEEE J Select Topics Quantum Electron 14(1):251–251CrossRefGoogle Scholar
  150. 150.
    Kah JCY, Chow TH, Ng BK, Razul SG, Olivo M, Sheppard CJR (2009) Concentration dependence of gold nanoshells on the enhancement of optical coherence tomography images: a quantitative study. Appl Opt 48(10):D96–D108CrossRefGoogle Scholar
  151. 151.
    Kah JCY, Olivo M, Chow TH, Song KS, Koh KZY, Mhaisalkar S, Sheppard CJR (2009) Control of optical contrast using gold nanoshells for optical coherence tomography imaging of mouse xenograft tumor model in vivo. J Biomed Opt 14(5):054015CrossRefGoogle Scholar
  152. 152.
    Park J, Estrada A, Sharp K, Sang K, Schwartz JA, Smith DK, Coleman C, Payne JD, Korgel BA, Dunn AK, Tunnell JW (2008) Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells. Opt Express 16(3):1590–1599ADSCrossRefGoogle Scholar
  153. 153.
    Park J, Estrada A, Schwartz JA, Payne JD, Dunn AK, Tunnell JW (2008) 3D microscopy of gold nanoshells in tumors using two-photon-induced photoluminescence. Proc SPIE 6869:68690LADSCrossRefGoogle Scholar
  154. 154.
    Park J, Estrada A, Sharp K, Sang K, Schwartz JA, Smith DK, Coleman C, Donald PJ, Korgel BA, Dunn AK, Tunnell JW (2008) Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells. In: Conference on lasers and electro-optics and conference on quantum electronics and laser science, vol 1, pp 1–2Google Scholar
  155. 155.
    Park J, Estrada AP, Diagaradjane K, Sharp K, Sang J, Schwartz A, Coleman C, Payne JD, Dunn AK, Krishnan S, Tunnell JW (2008) Microscopy of gold nanoshells in tumors using two-photon induced photoluminescence, Digest of the IEEE/LEOS Summer Topical Meetings, 1:71–72Google Scholar
  156. 156.
    Puvanakrishnan P, Park J, Diagaradjane P, Schwartz JA, Coleman CL, Gill-Sharp KL, Sang KL, Payne JD, Krishnan S, Tunnell JW (2009) Narrow band imaging of tumors using gold nanoshells. Proceedings of SPIE 7169:716912CrossRefGoogle Scholar
  157. 157.
    Puvanakrishnan P, Park J, Diagaradjane P, Schwartz JA, Coleman CL, Gill-Sharp KL, Sang KL, Payne JD, Krishnan S, Tunnell JW (2009) Near-infrared narrow-band imaging of gold/silica nanoshells in tumors. J Biomed Opt 14(2):024044CrossRefGoogle Scholar
  158. 158.
    Xie H, Wang ZJ, Bao A, Goins B, Phillips WT (2010) In vivo PET imaging and biodistribution of radiolabeled gold nanoshells in rats with tumor xenografts. Int J Pharm 395(1–2):324–330CrossRefGoogle Scholar
  159. 159.
    Garrett N, Whiteman M, Moger J (2011) Imaging the uptake of gold nanoshells in live cells using plasmon resonance enhanced four wave mixing microscopy. Opt Express 19(18):17563–17574ADSCrossRefGoogle Scholar
  160. 160.
    Zhan P, Liu JB, Dong W, Dong H, Chen Z, Wang ZL, Zhang Y, Zhu SN, Ming NB (2005) Reflectivity behavior of two-dimensional ordered array of metallodielectric composite particles at large incidence angles. Appl Phys Lett 86(5):051108ADSCrossRefGoogle Scholar
  161. 161.
    Graf C, van Blaaderen A (2002) Metallodielectric colloidal core-shell particles for photonic applications. Langmuir 18(2):524–534CrossRefGoogle Scholar
  162. 162.
    Tserkezis C, Gantzounis G, Stefanou N (2008) Collective plasmonic modes in ordered assemblies of metallic nanoshells. J Phys Condens Matter 20(7):075232ADSCrossRefGoogle Scholar
  163. 163.
    Stefanou N, Tserkezis C, Gantzounis G (2008) Plasmonic excitations in ordered assemblies of metallic nanoshells. Proceedings of SPIE 6989:698910CrossRefGoogle Scholar
  164. 164.
    Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124(6):1866–1878ADSzbMATHCrossRefGoogle Scholar
  165. 165.
    Bachelier G, Russier-Antoine I, Benichou E, Jonin C, Del Fatti N, Vallée F, Brevet P-F (2008) Fano profiles induced by near-field coupling in heterogeneous dimers of Gold and Silver nanoparticles. Phys Rev Lett 101(19):197401ADSCrossRefGoogle Scholar
  166. 166.
    Boller K-J, Imamolu A, Harris SE (1991) Observation of electromagnetically induced transparency. Phys Rev Lett 66(20):2593ADSCrossRefGoogle Scholar
  167. 167.
    Fleischhauer M, Imamoglu A, Marangos JP (2005) Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys 77(2):633ADSCrossRefGoogle Scholar
  168. 168.
    Mirin NA, Bao K, Nordlander P (2009) Fano resonances in plasmonic nanoparticle aggregates. J Phys Chem A 113(16):4028–4034CrossRefGoogle Scholar
  169. 169.
    Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ (2010) Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett 10(8):3184–3189ADSCrossRefGoogle Scholar
  170. 170.
    Fan JA, Wu C, Bao K, Bao J, Bardhan R, Halas NJ, Manoharan VN, Nordlander P, Shvets G, Capasso F (2010) Self-assembled plasmonic nanoparticle clusters. Science 328(5982):1135–1138ADSCrossRefGoogle Scholar
  171. 171.
    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C, Giessen H (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10(4):1103–1107ADSCrossRefGoogle Scholar
  172. 172.
    Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov VV, Dorpe PV, Nordlander P, Maier SA (2009) Fano resonances in individual coherent plasmonic nanocavities. Nano Lett 9(4):1663–1667ADSCrossRefGoogle Scholar
  173. 173.
    Peña-Rodríguez O, Pal U, Campoy-Quiles M, Rodríguez-Fernández L, Garriga M, Alonso MI (2011) Enhanced Fano resonance in asymmetrical Au:Ag heterodimers. J Phys Chem C 115(14):6410–6414CrossRefGoogle Scholar
  174. 174.
    Halas NJ, Lal S, Chang W-S, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111(6):3913–3961CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Centro de Microanálisis de Materiales (CMAM)Universidad Autónoma de Madrid (UAM)MadridSpain
  2. 2.Instituto de Óptica, Consejo Superior de Investigaciones Científicas (IO-CSIC)MadridSpain
  3. 3.Instituto de FísicaBenemérita Universidad Autónoma de PueblaPueblaMexico

Personalised recommendations