Optical and Excitonic Properties of Crystalline ZnS Nanowires

  • Rui Chen
  • Dehui Li
  • Qihua Xiong
  • Handong Sun


The interaction between light and matter can provide us a great deal of information about the properties of materials. Starting from the study of basic optical property, we will thus be able to investigate the superior property of the materials and make best use of them. Zinc sulfide (ZnS), an important II–VI group semiconductor compound, has been of growing interest owing to the promising application in ultraviolet excitonic optoelectronic devices. In this chapter, we will describe the application of optical spectroscopy to investigate the optical and excitonic property of one-dimensional ZnS nanowires, a developing material star.


Exciton Binding Energy Free Exciton Visible Emission Excitation Density Pulse Laser Vaporization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wagner R, Ellis W (1964) Vapor–liquid–solid mechanism of single crystal growth. Appl Phys Lett 4(5):89–90ADSCrossRefGoogle Scholar
  2. 2.
    Duan X, Huang Y, Agarwal R, Lieber CM (2003) Single-nanowire electrically driven lasers. Nature 421(6920):241–245ADSCrossRefGoogle Scholar
  3. 3.
    Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292(5523):1897–1899ADSCrossRefGoogle Scholar
  4. 4.
    Wang X, Summers CJ, Wang ZL (2004) Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett 4(3):423–426ADSCrossRefGoogle Scholar
  5. 5.
    Xiang J, Lu W, Hu Y, Wu Y, Yan H, Lieber CM (2006) Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441(7092):489–493ADSCrossRefGoogle Scholar
  6. 6.
    Zhou J, Gu Y, Fei P, Mai W, Gao Y, Yang R, Bao G, Wang ZL (2008) Flexible piezotronic strain sensor. Nano Lett 8(9):3035–3040ADSCrossRefGoogle Scholar
  7. 7.
    Chen R, Li D, Liu B, Peng Z, Gurzadyan GG, Xiong Q, Sun H (2010) Optical and excitonic properties of crystalline ZnS nanowires: toward efficient ultraviolet emission at room temperature. Nano Lett 10(12):4956–4961ADSCrossRefGoogle Scholar
  8. 8.
    Liu B, Chen R, Xu XL, Li DH, Zhao YY, Shen ZX, Xiong QH, Sun HD (2011) Exciton-related photoluminescence and lasing in CdS nanobelts. J Phys Chem C 115(26):12826–12830CrossRefGoogle Scholar
  9. 9.
    Chen R, Bakti Utama MI, Peng Z, Peng B, Xiong Q, Sun HD (2011) Excitonic properties and near-infrared coherent random lasing in vertically aligned CdSe nanowires. Adv Mater 23(11):1404–1408CrossRefGoogle Scholar
  10. 10.
    Tang ZK, Wong GKL, Yu P, Kawasaki M, Ohtomo A, Koinuma H, Segawa Y (1998) Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl Phys Lett 72(25):3270–3272ADSCrossRefGoogle Scholar
  11. 11.
    Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nanowire dye-sensitized solar cells. Nat Mater 4(6):455–459ADSCrossRefGoogle Scholar
  12. 12.
    Chen R, Xing GZ, Gao J, Zhang Z, Wu T, Sun HD (2009) Characteristics of ultraviolet photoluminescence from high quality tin oxide nanowires. Appl Phys Lett 95(6):061908ADSCrossRefGoogle Scholar
  13. 13.
    Wei ZP, Guo DL, Liu B, Chen R, Wong LM, Yang WF, Wang SJ, Sun HD, Wu T (2010) Ultraviolet light emission and excitonic fine structures in ultrathin single-crystalline indium oxide nanowires. Appl Phys Lett 96(3):031902ADSCrossRefGoogle Scholar
  14. 14.
    Utama MIB, Peng Z, Chen R, Peng B, Xu X, Dong Y, Wong LM, Wang S, Sun HD, Xiong Q (2011) Vertically aligned cadmium chalcogenide nanowire arrays on muscovite mica: a demonstration of epitaxial growth strategy. Nano Lett 11(8):3051–3057CrossRefGoogle Scholar
  15. 15.
    Ziegler J, Xu S, Kucur E, Meister F, Batentschuk M, Gindele F, Nann T (2008) Silica-coated InP/ZnS nanocrystals as converter material in white LEDs. Adv Mater 20(21):4068–4073CrossRefGoogle Scholar
  16. 16.
    Moreau JW, Weber PK, Martin MC, Gilbert B, Hutcheon ID, Banfield JF (2007) Extracellular proteins limit the dispersal of biogenic nanoparticles. Science 316(5831):1600–1603ADSCrossRefGoogle Scholar
  17. 17.
    Jiang X, Xie Y, Lu J, Zhu LY, He W, Qian YT (2001) Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by gamma-irradiation. Chem Mater 13(4):1213–1218CrossRefGoogle Scholar
  18. 18.
    Nakamura S (1998) The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 281(5379):956–961CrossRefGoogle Scholar
  19. 19.
    Blachnik R, Chu J, Gałazka RR, Geurts J, Gutowski J, Hoenerlage B, Hofmann D, Kossut J, Levy R, Michler P, Neukirch U, Strauch D, Story T, Waag A (1999) Numerical data and functional relationships in science and technology. Springer, Berlin, New Series Edition, Ed. U. RösslerGoogle Scholar
  20. 20.
    Tran TK, Park W, Tong W, Kyi MM, Wagner BK, Summers CJ (1997) Photoluminescence properties of ZnS epilayers. J Appl Phys 81(6):2803–2809ADSCrossRefGoogle Scholar
  21. 21.
    Xiong Q, Wang J, Reese O, Lew Yan Voon LC, Eklund PC (2004) Raman scattering from surface phonons in rectangular cross-sectional w-ZnS nanowires. Nano Lett 4(10):1991–1996ADSCrossRefGoogle Scholar
  22. 22.
    Ma C, Moore D, Li J, Wang ZL (2003) Nanobelts, nanocombs, and nanowindmills of wurtzite ZnS. Adv Mater 15(3):228–231CrossRefGoogle Scholar
  23. 23.
    Moore D, Wang ZL (2006) Growth of anisotropic one-dimensional ZnS nanostructures. J Mater Chem 16(40):3898–3905CrossRefGoogle Scholar
  24. 24.
    Fang XS, Bando Y, Shen GZ, Ye CH, Gautam UK, Costa PMFJ, Zhi CY, Tang CC, Golberg D (2007) Ultrafine ZnS nanobelts as field emitters. Adv Mater 19(18):2593–2596CrossRefGoogle Scholar
  25. 25.
    Gautam UK, Fang X, Bando Y, Zhan J, Golberg D (2008) Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-in nanowire core-shell heterostructures. ACS Nano 2(5):1015–1021CrossRefGoogle Scholar
  26. 26.
    Ding J, Zapien J, Chen W, Lifshitz Y, Lee S, Meng X (2004) Lasing in ZnS nanowires grown on anodic aluminum oxide templates. Appl Phys Lett 85(12):2361–2363ADSCrossRefGoogle Scholar
  27. 27.
    Xu XJ, Fei GT, Yu WH, Wang XW, Chen L, Zhang LD (2006) Preparation and formation mechanism of ZnS semiconductor nanowires made by the electrochemical deposition method. Nanotechnology 17(2):426–429ADSCrossRefGoogle Scholar
  28. 28.
    Sun HY, Yu YL, Li XH, Li W, Li F, Liu BT, Zhang XY (2007) Controllable growth of electrodeposited single-crystal nanowire arrays: the examples of metal Ni and semiconductor ZnS. J Cryst Growth 307(2):472–476ADSCrossRefGoogle Scholar
  29. 29.
    Moore DF, Ding Y, Wang ZL (2004) Crystal orientation-ordered ZnS nanowire bundles. J Am Chem Soc 126(44):14372–14373CrossRefGoogle Scholar
  30. 30.
    Shen G, Bando Y, Golberg D, Zhou C (2008) Heteroepitaxial growth of orientation-ordered ZnS nanowire arrays. J Phys Chem C 112(32):12299–12303CrossRefGoogle Scholar
  31. 31.
    Biswas S, Ghoshal T, Kar S, Chakrabarti S, Chaudhuri S (2008) ZnS nanowire arrays: synthesis, optical and field emission properties. Cryst Growth & Des 8(7):2171–2176CrossRefGoogle Scholar
  32. 32.
    Liang Y, Xu H, Hark SK (2010) Orientation and structure controllable epitaxial growth of ZnS nanowire arrays on GaAs substrates. J Phys Chem C 114(18):8343–8347CrossRefGoogle Scholar
  33. 33.
    Haase M, Qiu J, DePuydt J, Cheng H (1991) Blue-green laser diodes. Appl Phys Lett 59(11):1272–1274ADSCrossRefGoogle Scholar
  34. 34.
    Lu F, Cai W, Zhang Y, Li Y, Sun F, Heo SH, Cho SO (2006) Well-aligned zinc sulfide nanobelt arrays: excellent field emitters. Appl Phys Lett 89(23):231928ADSCrossRefGoogle Scholar
  35. 35.
    Dai H, Wong EW, Lu YZ, Fan S, Lieber CM (1995) Synthesis and characterization of carbide nanorods. Nature 375(6534):769–772ADSCrossRefGoogle Scholar
  36. 36.
    Wong EW, Maynor BW, Burns LD, Lieber CM (1996) Growth of metal carbide nanotubes and nanorods. Chem Mater 8(8):2041–2046CrossRefGoogle Scholar
  37. 37.
    Han W, Fan S, Li Q, Hu Y (1997) Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 277(5330):1287–1289CrossRefGoogle Scholar
  38. 38.
    Lu M-Y, Song J, Lu M-P, Lee C-Y, Chen L-J, Wang ZL (2009) ZnO-ZnS heterojunction and ZnS nanowire arrays for electricity generation. ACS Nano 3(2):357–362CrossRefGoogle Scholar
  39. 39.
    Feng QJ, Shen DZ, Zhang JY, Liang HW, Zhao DX, Lu YM, Fan XW (2005) Highly aligned ZnS nanorods grown by plasma-assisted metalorganic chemical vapor deposition. J Cryst Growth 285(4):561–565ADSCrossRefGoogle Scholar
  40. 40.
    Chan SK, Lok SK, Wang G, Cai Y, Wang N, Wong KS, Sou IK (2008) MBE-grown cubic ZnS nanowires. J Electron Mater 37(9):1433–1437ADSCrossRefGoogle Scholar
  41. 41.
    Li YQ, Tang JX, Wang H, Zapien JA, Shan YY, Lee ST (2007) Heteroepitaxial growth and optical properties of ZnS nanowire arrays on CdS nanoribbons. Appl Phys Lett 90(9):093127ADSCrossRefGoogle Scholar
  42. 42.
    Xiong QH, Chen G, Acord JD, Liu X, Zengel JJ, Gutierrez HR, Redwing JM, Voon L, Lassen B, Eklund PC (2004) Optical properties of rectangular cross-sectional ZnS nanowires. Nano Lett 4(9):1663–1668ADSCrossRefGoogle Scholar
  43. 43.
    Xiong QH, Gupta R, Adu KW, Dickey EC, Lian GD, Tham D, Fischer JE, Eklund PC (2003) Raman spectroscopy and structure of crystalline gallium phosphide nanowires. J Nanosci Nanotechnol 3(4):335–339CrossRefGoogle Scholar
  44. 44.
    Toll JS (1956) Causality and the dispersion relation: logical foundations. Phys Rev 104(6):1760MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    Yu PY, Cardona M (1996) Fundamentals of semiconductors, physics and materials properties. Springer, BerlinzbMATHGoogle Scholar
  46. 46.
    Klingshirn CF (2007) Semiconductor optics, 3rd edn. Springer, BerlinGoogle Scholar
  47. 47.
    Sun HD, Makino T, Segawa Y, Kawasaki M, Ohtomo A, Tamura K, Koinuma H (2002) Enhancement of exciton binding energies in ZnO/ZnMgO multiquantum wells. J Appl Phys 91(4):1993–1997ADSCrossRefGoogle Scholar
  48. 48.
    O’Connor DV, Phillips D (1984) Time-correlated single photon counting. Academic, LondonGoogle Scholar
  49. 49.
    Qadri S, Skelton E, Dinsmore A, Hu J, Kim W, Nelson C, Ratna B (2001) The effect of particle size on the structural transitions in zinc sulfide. J Appl Phys 89(1):115–119ADSCrossRefGoogle Scholar
  50. 50.
    Wang ZW, Daemen LL, Zhao YS, Zha CS, Downs RT, Wang XD, Wang ZL, Hemley RJ (2005) Morphology-tuned wurtzite-type ZnS nanobelts. Nat Mater 4(12):922–927ADSCrossRefGoogle Scholar
  51. 51.
    Wang YW, Zhang LD, Liang CH, Wang GZ, Peng XS (2002) Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires. Chem Phys Lett 357(3–4):314–318ADSCrossRefGoogle Scholar
  52. 52.
    Yang Y, Zhang WJ (2004) Preparation and photoluminescence of zinc sulfide nanowires. Mater Lett 58(29):3836–3838CrossRefGoogle Scholar
  53. 53.
    Ye C, Fang X, Li G, Zhang L (2004) Origin of the green photoluminescence from zinc sulfide nanobelts. Appl Phys Lett 85(15):3035–3037ADSCrossRefGoogle Scholar
  54. 54.
    Geng BY, Liu XW, Du QB, Wei XW, Zhang LD (2006) Structure and optical properties of periodically twinned ZnS nanowires. Appl Phys Lett 88(16):163104ADSCrossRefGoogle Scholar
  55. 55.
    Yin LW, Bando Y, Zhan JH, Li MS, Golberg D (2005) Self-assembled highly faceted wurtzite-type ZnS single-crystalline nanotubes with hexagonal cross-sections. Adv Mater 17(16):1972–1977CrossRefGoogle Scholar
  56. 56.
    Chai L, Du J, Xiong S, Li H, Zhu Y, Qian Y (2007) Synthesis of wurtzite ZnS nanowire bundles using a solvothermal technique. J Phys Chem C 111(34):12658–12662CrossRefGoogle Scholar
  57. 57.
    Ye C, Fang X, Wang M, Zhang L (2006) Temperature-dependent photoluminescence from elemental sulfur species on ZnS nanobelts. J Appl Phys 99(6):063504ADSCrossRefGoogle Scholar
  58. 58.
    Gibbons DJ, Spear WE (1966) Electron hopping transport and trapping phenomena in orthorhombic sulphur crystals. J Phys Chem Solids 27(11–12):1917–1925ADSCrossRefGoogle Scholar
  59. 59.
    Zhai TY, Dong Y, Wang YB, Cao ZW, Ma Y, Fu HB, Yao HN (2008) Size-tunable synthesis of tetrapod-like ZnS nanopods by seed-epitaxial metal-organic chemical vapor deposition. J Sol State Chem 181(4):950–956ADSCrossRefGoogle Scholar
  60. 60.
    Zhai T, Gu Z, Fu H, Ma Y, Yao J (2007) Synthesis of single-crystal ZnS nanoawls via two-step pressure-controlled vapor-phase deposition and their optical properties. Cryst Growth & Des 7(8):1388–1392CrossRefGoogle Scholar
  61. 61.
    Denzler D, Olschewski M, Sattler K (1998) Luminescence studies of localized gap states in colloidal ZnS nanocrystals. J Appl Phys 84(5):2841–2845ADSCrossRefGoogle Scholar
  62. 62.
    Yang Y, Yan H, Fu Z, Yang B, Xia L, Xu Y, Zuo J, Li F (2005) Photoluminescence investigation based on laser heating effect in ZnO-ordered nanostructures. J Phys Chem B 110(2):846–852CrossRefGoogle Scholar
  63. 63.
    Lippens PE, Lannoo M (1989) Calculation of the band gap for small CdS and ZnS crystallites. Phys Rev B 39(15):10935–10942ADSCrossRefGoogle Scholar
  64. 64.
    Sun HD, Makino T, Tuan NT, Segawa Y, Kawasaki M, Ohtomo A, Tamura K, Koinuma H (2001) Temperature dependence of excitonic absorption spectra in ZnO/Zn0.88 Mg0.12O multiquantum wells grown on lattice-matched substrates. Appl Phys Lett 78(17):2464–2466ADSCrossRefGoogle Scholar
  65. 65.
    Sun HD, Makino T, Segawa Y, Kawasaki M, Ohtomo A, Tamura K, Koinuma H (2001) Biexciton emission from ZnO/Zn0.74 Mg0.26O multiquantum wells. Appl Phys Lett 78(22):3385–3387ADSCrossRefGoogle Scholar
  66. 66.
    Sun HD, Makino T, Tuan NT, Segawa Y, Tang ZK, Wong GKL, Kawasaki M, Ohtomo A, Tamura K, Koinuma H (2000) Stimulated emission induced by exciton-exciton scattering in ZnO/ZnMgO multiquantum wells up to room temperature. Appl Phys Lett 77(26):4250–4252ADSCrossRefGoogle Scholar
  67. 67.
    He TC, Chen R, Lin WW, Huang F, Sun HD (2011) Two-photon-pumped stimulated emission from ZnO single crystal. Appl Phys Lett 99(8):081902ADSCrossRefGoogle Scholar
  68. 68.
    Kasprzak J, Richard M, Kundermann S, Baas A, Jeambrun P, Keeling JMJ, Marchetti FM, Szymanska MH, Andre R, Staehli JL, Savona V, Littlewood PB, Deveaud B, Dang LS (2006) Bose-Einstein condensation of exciton polaritons. Nature 443(7110):409–414ADSCrossRefGoogle Scholar
  69. 69.
    Kavokin A, Malpuech G, Gil B (2003) Semiconductor microcavities: towards polariton lasers. Mrs Internet J Nitride Semiconductor Res 8(3):3Google Scholar
  70. 70.
    Savona V, Piermarocchi C, Quattropani A, Schwendimann P, Tassone F (1999) Optical properties of microcavity polaritons. Phase Transit 68(1):169–279CrossRefGoogle Scholar
  71. 71.
    Weisbuch C, Nishioka M, Ishikawa A, Arakawa Y (1992) Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys Rev Lett 69(23):3314–3317ADSCrossRefGoogle Scholar
  72. 72.
    Viswanath AK, Lee JI, Kim D, Lee CR, Leem JY (1998) Exciton-phonon interactions, exciton binding energy, and their importance in the realization of room-temperature semiconductor lasers based on GaN. Phys Rev B 58(24):16333–16338ADSCrossRefGoogle Scholar
  73. 73.
    Liu B, Cheng CW, Chen R, Shen ZX, Fan HJ, Sun HD (2010) Fine structure of ultraviolet photoluminescence of tin oxide nanowires. J Phys Chem C 114(8):3407–3410CrossRefGoogle Scholar
  74. 74.
    Lautenschlager P, Garriga M, Cardona M (1987) Temperature dependence of the interband critical-point parameters of InP. Phys Rev B 36(9):4813–4820ADSCrossRefGoogle Scholar
  75. 75.
    Varshni YP (1967) Temperature dependence of the energy gap in semiconductors. Phys (Amsterdam) 34(1):149–154ADSCrossRefGoogle Scholar
  76. 76.
    Lautenschlager P, Garriga M, Logothetidis S, Cardona M (1987) Interband critical points of GaAs and their temperature dependence. Phys Rev B 35(17):9174–9189ADSCrossRefGoogle Scholar
  77. 77.
    Makino T, Chia CH, Tuan NT, Segawa Y, Kawasaki M, Ohtomo A, Tamura K, Koinuma H (2000) Exciton spectra of ZnO epitaxial layers on lattice-matched substrates grown with laser-molecular-beam epitaxy. Appl Phys Lett 76(24):3549–3551ADSCrossRefGoogle Scholar
  78. 78.
    Bogani F, Carraresi L, Filoramo A, Savasta S (1992) Exciton-polariton relaxation in ZnSe single crystals. Phys Rev B 46(15):9461–9468ADSCrossRefGoogle Scholar
  79. 79.
    O’ Neill M, Oestreich M, Rühle WW, Ashenford DE (1993) Exciton radiative decay and homogeneous broadening in CdTe/Cd0.85Mn0.15Te multiple quantum wells. Phys Rev B 48(12):8980–8985ADSCrossRefGoogle Scholar
  80. 80.
    Adu KW, Xiong Q, Gutierrez HR, Chen G, Eklund PC (2006) Raman scattering as a probe of phonon confinement and surface optical modes in semiconducting nanowires. Appl Phys Mater Sci Process 85(3):287–297ADSCrossRefGoogle Scholar
  81. 81.
    Ozaki S, Adachi S (1993) Optical constants of cubic ZnS. Jpn J Appl Phys 32(11A):5008–5013, Part 1: Regular Papers, Short Notes & Review PapersADSCrossRefGoogle Scholar
  82. 82.
    Ong HC, Chang RPH (2001) Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry. Appl Phys Lett 79(22):3612–3614ADSCrossRefGoogle Scholar
  83. 83.
    Teke A, Özgür Ü, DoÄŸan S, Gu X, Morkoç H, Nemeth B, Nause J, Everitt HO (2004) Excitonic fine structure and recombination dynamics in single-crystalline ZnO. Phys Rev B 70(19):195207ADSCrossRefGoogle Scholar
  84. 84.
    Yoshida H, Yamashita Y, Kuwabara M, Kan H (2008) A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode. Nature Photon 2(9):551–554CrossRefGoogle Scholar
  85. 85.
    Suematsu Y (1985) Advances in semiconductor-lasers. Phys Today 38(5):32–39ADSCrossRefGoogle Scholar
  86. 86.
    Narukawa Y, Kawakami Y, Funato M, Fujita S, Nakamura S (1997) Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm. Appl Phys Lett 70(8):981–983ADSCrossRefGoogle Scholar
  87. 87.
    Zapien JA, Jiang Y, Meng XM, Chen W, Au FCK, Lifshitz Y, Lee ST (2004) Room-temperature single nanoribbon lasers. Appl Phys Lett 84(7):1189–1191ADSCrossRefGoogle Scholar
  88. 88.
    Yang HY, Yu SF, Yan J, Zhang LD (2010) Random lasing action from randomly assembled ZnS nanosheets. Nanoscale Res Lett 5(5):809–812ADSCrossRefGoogle Scholar
  89. 89.
    Chen R, Ling B, Sun XW, Sun HD (2011) Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks. Adv Mater 23(19):2199–2204CrossRefGoogle Scholar
  90. 90.
    Jiang Y, Zhang WJ, Jie JS, Meng XM, Zapien JA, Lee ST (2006) Homoepitaxial growth and lasing properties of ZnS nanowire and nanoribbon arrays. Adv Mater 18(12):1527–1532CrossRefGoogle Scholar
  91. 91.
    Jiang Y, Meng XM, Liu J, Xie ZY, Lee CS, Lee ST (2003) Hydrogen-assisted thermal evaporation synthesis of ZnS nanoribbons on a large scale. Adv Mater 15(4):323–327CrossRefGoogle Scholar
  92. 92.
    Ding Y, Wang XD, Wang ZL (2004) Phase controlled synthesis of ZnS nanobelts: zinc blende vs wurtzite. Chem Phys Lett 398(1–3):32–36ADSCrossRefGoogle Scholar
  93. 93.
    Fang XS, Ye CH, Zhang LD, Wang YH, Wu YC (2005) Temperature-controlled catalytic growth of ZnS nanostructures by the evaporation of ZnS nanopowders. Adv Funct Mater 15(1):63–68CrossRefGoogle Scholar
  94. 94.
    Chen R, Sun HD, Wang T, Hui KN, Choi HW (2010) Optically pumped ultraviolet lasing from nitride nanopillars at room temperature. Appl Phys Lett 96(24):241101ADSCrossRefGoogle Scholar
  95. 95.
    Cao H, Zhao YG, Ho ST, Seelig EW, Wang QH, Chang RPH (1999) Random laser action in semiconductor powder. Phys Rev Lett 82(11):2278–2281ADSCrossRefGoogle Scholar
  96. 96.
    Cao H (2003) Lasing in random media. Waves Random and Complex Media 13(3):R1–R39ADSCrossRefGoogle Scholar
  97. 97.
    Cheng CW, Liu B, Yang HY, Zhou WW, Sun L, Chen R, Yu SF, Zhang JX, Gong H, Sun HD, Fan HJ (2009) Hierarchical assembly of ZnO nanostructures on SnO2 backbone nanowires: low-temperature hydrothermal preparation and optical properties. ACS Nano 3(10):3069–3076CrossRefGoogle Scholar
  98. 98.
    Yang HY, Yu SF, Yan J, Zhang LD (2010) Wide bandwidth lasing randomly assembled ZnS/ZnO biaxial nanobelt heterostructures. Appl Phys Lett 96(14):141115ADSCrossRefGoogle Scholar
  99. 99.
    Yu S, Yuen C, Lau S, Lee H (2004) Zinc oxide thin-film random lasers on silicon substrate. Appl Phys Lett 84(17):3244–3246ADSCrossRefGoogle Scholar
  100. 100.
    Jayanthi K, Chawla S, Chander H, Haranath D (2007) Structural, optical and photoluminescence properties of ZnS: Cu nanoparticle thin films as a function of dopant concentration and quantum confinement effect. Crys Res Technol 42(10):976–982CrossRefGoogle Scholar
  101. 101.
    Jindal Z, Verma NK (2008) Photoluminescent properties of ZnS: Mn nanoparticles with in-built surfactant. J Mater Sci 43(19):6539–6545ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Division of Physics and Applied Physics, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore
  2. 2.Division of Microelectronics, School of Electrical and Electronics EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations