Skip to main content

UV-VIS Spectroscopy/Photoluminescence for Characterization of Silica Coated Core-shell Nanomaterials

  • Chapter
  • First Online:
UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization

Abstract

Silica as a coating material promises an unparalleled opportunity for enhancement of physiochemical properties and functions by using core–shell rational designs and profiting from its synthetic versatility. This chapter provides a brief overview of recent progress in the synthesis of silica-coated nanomaterials and their characterization by UV-VIS spectroscopy/Photoluminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Na M, Park H, Ahn M, Lee H, Chung I (2010) Syntheis of organic-inorganic hybrid sols with nano silica particles and organoalkoxysilanes for transparent and high-thermal-resistance coating films using sol-gel reaction. J Nanosci Nanotechnol 10(109):6992

    Article  Google Scholar 

  2. Iwakai K, Tago T, Konno H, Nakasaka Y, Masuda T (2011) Preparation of nano-crystalline MFI zeolite via hydrothermal synthesis in water/surfactant/organic solvent using fumed silica as the Si source. Microporous Mesoporous Mater 141(1–3):167

    Article  Google Scholar 

  3. Terskaya IN, Sal’nikov DS, Makarov SV, Yarovaya OV, Lilin SA (2008) Chemical synthesis of stable nano-sized water-organic copper dispersions. Prot Met 44(5):468

    Article  Google Scholar 

  4. Lee YJ, Jun KW, Park JY, Potdar HS, Chikate RC (2008) A simple chemical route for the synthesis of gamma-Fe2O3 nano-particles dispersed in organic solvents via an iron-hydroxy oleate precursor. J Ind Eng Chem 14(1):38

    Article  Google Scholar 

  5. Nakamura S, Sakamoto W, Yogo T (2006) In situ synthesis of nano-sized cobalt ferrite particle/organic hybrid. J Mater Res 21(5):1336

    Article  ADS  Google Scholar 

  6. Darbandi M, Nann T (2006) One-pot synthesis of YF3@silica core/shell nanoparticles. Chem Commun 776

    Google Scholar 

  7. Ow HD, Larson R, Srivastava M, Baird BA, Webb WW, Wiesner U (2005) Bright and stable core–shell fluorescent silica nanoparticles. Nano Lett 5:113

    Article  ADS  Google Scholar 

  8. Kobayashi Y, Katakami H, Mine E, Nagao D, Konno M, Liz-Marzàn LM (2005) Silica coating of silver nanoparticles using a modified Stöber method. J Colloid Interface Sci 283:392

    Article  Google Scholar 

  9. Eggenberger K, Merkoulov A, Darbandi M, Nann T, Nick P (2007) Direct immunofluorescence of plant microtubules based on semiconductor nanocrystals. Bioconjug Chem 18:1879

    Article  Google Scholar 

  10. Graf C, Vossen DLJ, Imhof A, Van Blaaderen A (2003) A general method to coat colloidal particles with silica. Langmuir 19:6693

    Article  Google Scholar 

  11. Mornet S, Elissalde C, Hornebecq V, Bidault O, Duguet E, Brisson A, Maglione M (2005) Controlled growth of silica shell on Ba0.6Sr0.4TiO3 nanoparticles used as precursors of ferroelectric composites. Chem Mater 17:4530

    Article  Google Scholar 

  12. Chawla S, Ravishanker, Khan AF, Yadav A, Chander H, Shanker V (2011) Enhanced luminescence and degradation resistance in Tb modified Yttrium Borate core-nano silica shell phosphor under UV and VUV excitation. Appl Surf Sci 257(16):7167

    Article  ADS  Google Scholar 

  13. Wu CL, Hong JQ, Guo XQ, Huang CB, Lai JP, Zheng JS, Chen JB, Mu X, Zhao YB (2008) Fluorescent core-silica shell nanoparticles as tunable precursors: towards encoding and multifunctional nano-probes. Chem Commun 750

    Google Scholar 

  14. Badr Y, Mahmoud MA (2006) Photocatalytic degradation of methyl orange by gold silver nano-core/silica nano-shell. J Phys Chem Solid 68(3):413

    Article  ADS  Google Scholar 

  15. Li YS, Church JS, Woodhead AL, Moussa F (2010) Preparation and characterization of silica coated iron oxide magnetic nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 76(5):484

    Article  ADS  Google Scholar 

  16. Greenwood P, Gevert BS, Otterstedt JE, Niklasson G, Vargas W (2010) Novel nano-composite particles: titania-coated silica cores. Pigment Resin Technol 39(3):135

    Google Scholar 

  17. Bazin L, Gressier M, Taberna PL, Menu MJ, Simon P (2008) Electrophoretic silica-coating process on a nano-structured copper electrode. Chem Commun 5004

    Google Scholar 

  18. Hsieh CT, Wu FL, Yang SY (2008) Superhydrophobicity from composite nano/microstructures: carbon fabrics coated with silica nanoparticles. Surf CoatTechnol 202(24):6103

    Article  Google Scholar 

  19. Yuan JJ, Zhou SX, You B, Wu LM (2005) Organic pigment particles coated with colloidal nano-silica particles via layer-by-layer assembly. Chem Mater 17(14):3587

    Article  Google Scholar 

  20. Park JS, Han YH (2005) Nano size BaTiO3 powder coated with silica. Ceram Int 31(6):777

    Article  MathSciNet  Google Scholar 

  21. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62

    Article  Google Scholar 

  22. Canton G, Ricco R, Marinello F, Carmignato S, Enrichi F (2011) Modified Stober synthesis of highly luminescent dye-doped silica nanoparticles. J Nanopart Res 13(9):4349

    Article  Google Scholar 

  23. Rosa ILV, Oliveira LH, Longo E, Varela JA (2011) Synthesis and photoluminescence behavior of the Eu(3+) ions as a nanocoating over a silica Stober matrix. J Fluoresc 21(3):975

    Article  Google Scholar 

  24. Brambilla R, Radtke C, dos Santos JHZ, Miranda MSL (2010) Silica-magnesia mixed oxides prepared by a modified Stober route: structural and textural aspects. Powder Technol 198(3):337

    Article  Google Scholar 

  25. Park I, Ko SH, An YS, Choi KH, Chun H, Lee S (2009) Kim, G, monodisperse polystyrene-silica core-shell particles and silica hollow spheres prepared by the Stober method. J Nanosci Nanotechnol 9(12):7224

    Google Scholar 

  26. Kobayashi Y, Shimizu N, Misawa K, Takeda M, Ohuchi N, Kasuya A, Konno M (2008) Preparation of amine free silica-coated AgI nanoparticles with modified Stober method. Surf Eng 24(4):248

    Article  Google Scholar 

  27. Barnakov YA, Yu MH, Rosenzweig Z (2005) Manipulation of the magnetic properties of magnetite-silica nanocomposite materials by controlled Stober synthesis. Langmuir 21(16):7524

    Article  Google Scholar 

  28. Lee MH, Beyer FL, Furst EM (2005) Synthesis of monodisperse fluorescent core-shell silica particles using a modified Stober method for imaging individual particles in dense colloidal suspensions. J Colloid Interface Sci 288(1):114

    Article  Google Scholar 

  29. Kobayashi Y, Katakami H, Mine E, Nagao D, Konno M, Liz-Marzan LM (2005) Silica coating of silver nanoparticles using a modified Stober method. J Colloid Interface Sci 283(2):392

    Article  Google Scholar 

  30. Masalov VM, Sukhinina NS, Kudrenko EA, Emelchenko GA (2011) Mechanism of formation and nanostructure of Stober silica particles. Nanotechnology 22(27):275718

    Article  ADS  Google Scholar 

  31. Terleczky P, Nyulaszi L (2009) The effect of the primary solvate shell on the mechanism of the Stober silica synthesis. A density functional investigation. J Phys Chem A 113(6):1096

    Article  Google Scholar 

  32. Chou KS, Chen CC (2008) The critical conditions for secondary nucleation of silica colloids in a batch Stober growth process. Ceram Int 34(7):1623

    Article  Google Scholar 

  33. Xu Y, Wu D, Sun YH, Gao HC, Yuan HZ, Deng F (2007) A new study on the kinetics of Stober synthesis by in-situ liquid Si-29 NMR. J Sol-Gel Sci Technol 42(1):13

    Article  Google Scholar 

  34. Nozawa K, Gailhanou H, Raison L, Panizza P, Ushiki H, Sellier E, Delville JP, Delville MH (2005) Smart control of monodisperse Stober silica particles: effect of reactant addition rate on growth process. Langmuir 21(4):1516

    Article  Google Scholar 

  35. Liu RL, Xu Y, Li ZH, Wu D, Sun YH, Gao HC, Yuan HZ, Deng F (2004) Liquid-state Si-29 NMR study on the chemical kinetics of Stober synthesis. Acta Chimica Sinica 62(1):22

    Google Scholar 

  36. Sun DX, Miao X, Zhang KJ, Kim H, Yuan YG (2011) Triazole-forming waterborne polyurethane composites fabricated with Silane coupling agent functionalized nano-silica. J Colloid Interface Sci 361(2):483

    Article  Google Scholar 

  37. Mallakpour S, Barati A (2011) Efficient preparation of hybrid nanocomposite coatings based on poly (vinyl alcohol) and silane coupling agent modified TiO(2) nanoparticles. Prog Org Coat 71(4):391

    Article  Google Scholar 

  38. Sabzi M, Mirabedini SM, Zohuriaan-Mehr J, Atai M (2009) Surface modification of TiO(2) nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Prog Org Coat 65(2):222

    Article  Google Scholar 

  39. Zhao HJ, Zhang ZJ, Fan JW (2008) The effects of addition of silane-coupling agents on the performance of magnetic nano-sized composite microspheres (MCM). Rare Met Mater Eng 37:733

    Google Scholar 

  40. Lu Y, Yin Y, Li ZY, Xia Y (2002) Synthesis and self-assembly of Au@SiO2 core–shell colloids. Nano Lett 2:785

    Article  ADS  Google Scholar 

  41. Yin Y, Lu Y, Sun Y, Xia Y (2002) Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica. Nano Lett 2:427

    Article  ADS  Google Scholar 

  42. Hardikar VV, Matijevic E (2000) Coating of nanosize silver particles with silica. J Colloid Interface Sci 221:133

    Article  Google Scholar 

  43. Ohmori M, Matijevic E (1993) Preparation and properties of uniform coated inorganic colloidal particles: 8. Silica on iron. J Colloid Interface Sci 160:288

    Article  Google Scholar 

  44. Teng HH, Xu SK, Wang M (2010) Controllable synthesis of different dimensions nano-ZnO by microemulsion and photocatalytic activity. J Inorg Mater 25(10):1034

    Article  Google Scholar 

  45. Chung CY, Lu CH (2010) Reverse-microemulsion preparation of visible-light-driven nano-sized BiVO(4). J Alloys Compd 502(1):L1

    Article  Google Scholar 

  46. Solanki JN, Murthy ZVP (2010) Highly monodisperse and sub-nano silver particles synthesis via microemulsion technique. Colloids Surf A Physicochem Eng Asp 359:31

    Article  Google Scholar 

  47. Cao M, Wu X, He X, Hu C (2005) Microemulsion-mediated solvothermal synthesis of SrCO3 nanostructures. Langmuir 21:6093

    Article  Google Scholar 

  48. Mi Y, Huang ZY, Zhou ZG, Hu FL, Meng QF (2009) Room-temperature preparation of BaMoO(4) nano-octahedra by microemulsion method. Chem Lett 38(5):404

    Article  Google Scholar 

  49. Zhu ZF, Geng CL, Yang J, Li JP, Yu WJ (2008) Microemulsion synthesis of ZrO(2) nano-powders and their properties. Rare Met Mater Eng 37:800

    Google Scholar 

  50. Pithan C, Shiratori Y, Waser R, Dornseiffer J, Haegel FH (2006) Preparation, processing, and characterization of nano-crystalline BaTiO3 powders and ceramics derived from microemulsion-mediated synthesis. J Am Ceram Soc 89(9):2908

    Google Scholar 

  51. Wu DC, Fu RW, Dresselhaus MS, Dresselhaus G (2006) Fabrication and nano-structure control of carbon aerogels via a microemulsion-templated sol-gel polymerization method. Carbon 44(4):675

    Article  Google Scholar 

  52. Bae DS, Han KS, Adair JH (2002) Synthesis of platinum/silica nanocomposite particles by reverse micelle and sol–gel processing. J Am Ceram Soc 85:1321

    Article  Google Scholar 

  53. Bae DS, Han KS, Adair JH (2002) Synthesis of Cu/SiO2 nanosize particles by a reverse micelle and sol-gel processing. J Mater Sci Lett 21:53

    Article  Google Scholar 

  54. Chung SH, Lee DW, Kim MS, Lee KY (2011) The synthesis of silica and silica–ceria, core–shell nanoparticles in a water-in-oil (W/O) microemulsion composed of heptane and water with the binary surfactants AOT and NP-5. J Colloid Interface Sci 355(1):70

    Article  Google Scholar 

  55. Mokari T, Sertchook H, Aharoni A, Ebenstein Y, Avnir D, Banin U (2005) Nano@micro: general method for entrapment of nanocrystals in sol–gel-derived composite hydrophobic silica spheres. Chem Mater 17:258

    Article  Google Scholar 

  56. Li T, Moon J, Morrone AA, Mecholsky JJ, Talham DR, Adair JH (1999) Preparation of Ag/SiO2 nanosize composites by a reverse micelle and sol–gel technique. Langmuir 15:4328

    Article  Google Scholar 

  57. Yi DK, Selvan ST, Lee SS, Papaefthymiou GC, Kundaliya D, Ying JY (2005) Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. J Am Chem Soc 127:4990

    Article  Google Scholar 

  58. Selvan ST, Tan TT, Ying JY (2005) Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence. Adv Mater 17:1620

    Article  Google Scholar 

  59. Gao X, Yu KM, Tam KY, Tsang SC (2003) Colloidal stable silica encapsulated nano-magnetic composite as a novel bio-catalyst carrier. Chem Commun 2998

    Google Scholar 

  60. Wang GN, Wang C, Dou WC, Ma Q, Yuan PF, Su XG (2009) The synthesis of magnetic and fluorescent bi-functional silica composite nanoparticles via reverse microemulsion method. J Fluoresc 19(6):939

    Article  Google Scholar 

  61. Charpentier PA, Li XS, Sui RH (2009) Study of the sol-gel reaction mechanism in supercritical CO(2) for the formation of SiO(2) nanocomposites. Langmuir 25(6):3748

    Article  Google Scholar 

  62. Jiao JX, Xu Q, Li LM, Tsubasa T, Kobayashi T (2008) Effect of PEG with different M-W as template direction reagent on preparation of porous TiO2/SiO2 with assistance of supercritical CO2. Colloid Polym Sci 286(13):1485

    Article  Google Scholar 

  63. Jiao JX, Xu Q, Li LM (2007) Porous TiO2/SiO2 composite prepared using PEG as template direction reagent with assistance of supercritical CO2. J Colloid Interface Sci 316(2):596

    Article  Google Scholar 

  64. Thakur R, Gupta RB (2005) Supercritical CO2 based silica coating of gold nanoparticles using water-in-Oil microemulsions. Ind Eng Chem Res 44:3086

    Article  Google Scholar 

  65. Thomann R, Nann T (2005) Single quantum dots in silica spheres by microemulsion synthesis. Chem Mater 17(23):5720

    Article  Google Scholar 

  66. Darbandi M, Urban G, Kruger M (2010) A facile synthesis method to silica coated CdSe/ZnS nanocomposites with tuneable size and optical properties. J Colloid Interface Sci 351(1):30

    Article  Google Scholar 

  67. Xiao Y, Gao ZY, Wu DP, Jiang Y, Liu N, Yi R, Jiang K (2011) Synthesis of nano-sized EuF(3) hollow spheres via one step chemical conversion. Mater Chem Phys 129:161

    Article  Google Scholar 

  68. Tang YW, Chen Y, Zhou P, Zhou YM, Lu LD, Bao JC, Lu TH (2010) Electro-catalytic performance of PdCo bimetallic hollow nano-spheres for the oxidation of formic acid. J Solid State Electrochem 14(11):2077

    Article  Google Scholar 

  69. Chen HM, Liu RS, Lo MY, Chang SC, Tsai LD, Peng YM, Lee JF (2008) Hollow platinum spheres with nano-channels: synthesis and enhanced catalysis for oxygen reduction. J Phys Chem C 112(20):7522

    Article  Google Scholar 

  70. Koo HJ, Kim YJ, Lee YH, Lee WI, Kim K, Park NG (2008) Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells. Adv Mater 20(1):195

    Article  Google Scholar 

  71. Watanabe M, Yamashita H, Chen X, Yamanaka J, Kotobuki M, Suzuki H, Uchida H (2007) Nano-sized Ni particles on hollow alumina ball: catalysts for hydrogen production. Appl Catal Environ 71:237

    Article  Google Scholar 

  72. Liu ZX, Park JN, Abdi SHR, Park SK, Park YK, Lee CW (2006) Nano-sized carbon hollow spheres for abatement of ethylene. Top Catal 39:221

    Article  Google Scholar 

  73. Bernard S, Salles V, Li JP, Brioude A, Bechelany M, Demirci UB, Miele P (2011) High-yield synthesis of hollow boron nitride nano-polyhedrons. J Mater Chem 21(24):8694

    Article  Google Scholar 

  74. Wang FL, Liu JR, Kong J, Zhang ZJ, Wang XZ, Itoh M, Machida K (2011) Template free synthesis and electromagnetic wave absorption properties of monodispersed hollow magnetite nano-spheres. J Mater Chem 21(12):4314

    Article  ADS  Google Scholar 

  75. Li Y, Guo YQ, Tan RQ, Cui P, Li Y, Song WJ (2010) Selective synthesis of SnO(2) hollow microspheres and nano-sheets via a hydrothermal route. Chin Sci Bull 55(7):581

    Article  Google Scholar 

  76. Hosokawa S, Iwamoto S, Inoue M (2008) synthesis of nano-hollow-shaped rare earth oxides by glycothermal treatment of rare earth acetates and subsequent calcination. J Alloys Compd 457:510

    Article  Google Scholar 

  77. Tsai MS, Li MJ, Yen FH (2008) Synthesis of nano grade hollow silica sphere via a soft template method. J Nanosci Nanotechnol 8(6):3097

    Article  Google Scholar 

  78. Darbandi M, Thomann R, Nann T (2007) Hollow silica nanospheres: In situ, semi-in situ, and two-step synthesis. Chem Mater 19(7):1700

    Article  Google Scholar 

  79. Chen B, Jiao XL, Chen DR (2010) Size-controlled and size-designed synthesis of nano/submicrometer Ag particles. Cryst Growth Des 10(8):3378

    Article  Google Scholar 

  80. Shi XL, Wang S, Duan XL, Zhang QX (2008) Synthesis of nano Ag powder by template and spray pyrolysis technology. Mater Chem Phys 112(3):1110

    Article  Google Scholar 

  81. Tomonari M, Ida K, Imanishi H, Yonezawa T, Mori K, Yamashita H (2008) Effects of preparation conditions on the synthesis off nano-sized Ag metal particles by the wet-process using 3-mercapto-propionic acid. Res Chem Intermed 34:641

    Article  Google Scholar 

  82. Cavaliere-Jaricot S, Darbandi M, Nann T (2007) Au-silica nanoparticles by “reverse” synthesis of cores in hollow silica shells. Chem Commun 2031

    Google Scholar 

  83. Demchenko D, Robinson RD, Sadtler BC, Erdonmez K, Alivisatos AP, Wang LW (2008) Formation mechanism and properties of CdS-Ag2S nanorod superlattices. ACS Nano 2:627

    Article  Google Scholar 

  84. Peng P, Milliron DJ, Hughes SM, Johnson JC, Alivisatos AP, Saykally RJ (2005) Femtosecond spectroscopy of carrier relaxation dynamics in type II CdSe/CdTe tetrapod heteronanostructures. Nano Lett 5:1809

    Article  ADS  Google Scholar 

  85. Liz-Marzan LM, Mulvaney P (2003) The assembly of coated nanocrystals. J Phys Chem B 107:7312

    Article  Google Scholar 

  86. Zou G, Ju H (2004) Electrogenerated chemiluminescence from a CdSe nanocrystal film and its sensing application in aqueous solution. Anal Chem 76:6871

    Article  Google Scholar 

  87. Zayats M, Baron R, Popov I, Willner I (2005) Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensor design. Nano Lett 5:21

    Article  ADS  Google Scholar 

  88. Cordes DB, Gamsey S, Singaram B (2006) Fluorescent quantum dots with boronic acid substituted viologens to sense glucose in aqueous solutions. Angew Chem 118:3913

    Article  Google Scholar 

  89. Cavaliere-Jaricot S, Darbandi M, Kucur E, Nann T (2008) Silica coated quantum dots: a new tool for electrochemical and optical glucose detection. Microchim Acta 160:375

    Article  Google Scholar 

  90. Darbandi M, Urban G, Kruger M (2012) Bright luminescent, colloidal stable silica coated CdSe/ZnS nanocomposite by an in-situ, one-pot surface functionalization. J Colloid Interface Sci 365:41–45

    Article  Google Scholar 

  91. Salgueiriño-Maceira V, Correa-Duarte MA, Spasova M, Liz-Marzán LM, Farle M (2006) Composite silica spheres with magnetic and luminescent functionalities. Adv Funct Mater 16:509

    Article  Google Scholar 

  92. Quarta A, Corato RD, Manna L, Ragusa A, Pellegrino T (2007) Fluorescent-magnetic hybrid nanostructures: preparation, properties, and applications in biology. IEEE Trans Nanobioscience 6:298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masih Darbandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Darbandi, M. (2013). UV-VIS Spectroscopy/Photoluminescence for Characterization of Silica Coated Core-shell Nanomaterials. In: Kumar, C. (eds) UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27594-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27594-4_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27593-7

  • Online ISBN: 978-3-642-27594-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics