UV-VIS Spectroscopy/Photoluminescence for Characterization of Silica Coated Core-shell Nanomaterials

Chapter

Abstract

Silica as a coating material promises an unparalleled opportunity for enhancement of physiochemical properties and functions by using core–shell rational designs and profiting from its synthetic versatility. This chapter provides a brief overview of recent progress in the synthesis of silica-coated nanomaterials and their characterization by UV-VIS spectroscopy/Photoluminescence.

Keywords

Silica Particle Silica Nanoparticles Silane Coupling Agent Silica Shell Silica Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Na M, Park H, Ahn M, Lee H, Chung I (2010) Syntheis of organic-inorganic hybrid sols with nano silica particles and organoalkoxysilanes for transparent and high-thermal-resistance coating films using sol-gel reaction. J Nanosci Nanotechnol 10(109):6992CrossRefGoogle Scholar
  2. 2.
    Iwakai K, Tago T, Konno H, Nakasaka Y, Masuda T (2011) Preparation of nano-crystalline MFI zeolite via hydrothermal synthesis in water/surfactant/organic solvent using fumed silica as the Si source. Microporous Mesoporous Mater 141(1–3):167CrossRefGoogle Scholar
  3. 3.
    Terskaya IN, Sal’nikov DS, Makarov SV, Yarovaya OV, Lilin SA (2008) Chemical synthesis of stable nano-sized water-organic copper dispersions. Prot Met 44(5):468CrossRefGoogle Scholar
  4. 4.
    Lee YJ, Jun KW, Park JY, Potdar HS, Chikate RC (2008) A simple chemical route for the synthesis of gamma-Fe2O3 nano-particles dispersed in organic solvents via an iron-hydroxy oleate precursor. J Ind Eng Chem 14(1):38CrossRefGoogle Scholar
  5. 5.
    Nakamura S, Sakamoto W, Yogo T (2006) In situ synthesis of nano-sized cobalt ferrite particle/organic hybrid. J Mater Res 21(5):1336ADSCrossRefGoogle Scholar
  6. 6.
    Darbandi M, Nann T (2006) One-pot synthesis of YF3@silica core/shell nanoparticles. Chem Commun 776Google Scholar
  7. 7.
    Ow HD, Larson R, Srivastava M, Baird BA, Webb WW, Wiesner U (2005) Bright and stable core–shell fluorescent silica nanoparticles. Nano Lett 5:113ADSCrossRefGoogle Scholar
  8. 8.
    Kobayashi Y, Katakami H, Mine E, Nagao D, Konno M, Liz-Marzàn LM (2005) Silica coating of silver nanoparticles using a modified Stöber method. J Colloid Interface Sci 283:392CrossRefGoogle Scholar
  9. 9.
    Eggenberger K, Merkoulov A, Darbandi M, Nann T, Nick P (2007) Direct immunofluorescence of plant microtubules based on semiconductor nanocrystals. Bioconjug Chem 18:1879CrossRefGoogle Scholar
  10. 10.
    Graf C, Vossen DLJ, Imhof A, Van Blaaderen A (2003) A general method to coat colloidal particles with silica. Langmuir 19:6693CrossRefGoogle Scholar
  11. 11.
    Mornet S, Elissalde C, Hornebecq V, Bidault O, Duguet E, Brisson A, Maglione M (2005) Controlled growth of silica shell on Ba0.6Sr0.4TiO3 nanoparticles used as precursors of ferroelectric composites. Chem Mater 17:4530CrossRefGoogle Scholar
  12. 12.
    Chawla S, Ravishanker, Khan AF, Yadav A, Chander H, Shanker V (2011) Enhanced luminescence and degradation resistance in Tb modified Yttrium Borate core-nano silica shell phosphor under UV and VUV excitation. Appl Surf Sci 257(16):7167ADSCrossRefGoogle Scholar
  13. 13.
    Wu CL, Hong JQ, Guo XQ, Huang CB, Lai JP, Zheng JS, Chen JB, Mu X, Zhao YB (2008) Fluorescent core-silica shell nanoparticles as tunable precursors: towards encoding and multifunctional nano-probes. Chem Commun 750Google Scholar
  14. 14.
    Badr Y, Mahmoud MA (2006) Photocatalytic degradation of methyl orange by gold silver nano-core/silica nano-shell. J Phys Chem Solid 68(3):413ADSCrossRefGoogle Scholar
  15. 15.
    Li YS, Church JS, Woodhead AL, Moussa F (2010) Preparation and characterization of silica coated iron oxide magnetic nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 76(5):484ADSCrossRefGoogle Scholar
  16. 16.
    Greenwood P, Gevert BS, Otterstedt JE, Niklasson G, Vargas W (2010) Novel nano-composite particles: titania-coated silica cores. Pigment Resin Technol 39(3):135Google Scholar
  17. 17.
    Bazin L, Gressier M, Taberna PL, Menu MJ, Simon P (2008) Electrophoretic silica-coating process on a nano-structured copper electrode. Chem Commun 5004Google Scholar
  18. 18.
    Hsieh CT, Wu FL, Yang SY (2008) Superhydrophobicity from composite nano/microstructures: carbon fabrics coated with silica nanoparticles. Surf CoatTechnol 202(24):6103CrossRefGoogle Scholar
  19. 19.
    Yuan JJ, Zhou SX, You B, Wu LM (2005) Organic pigment particles coated with colloidal nano-silica particles via layer-by-layer assembly. Chem Mater 17(14):3587CrossRefGoogle Scholar
  20. 20.
    Park JS, Han YH (2005) Nano size BaTiO3 powder coated with silica. Ceram Int 31(6):777MathSciNetCrossRefGoogle Scholar
  21. 21.
    Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62CrossRefGoogle Scholar
  22. 22.
    Canton G, Ricco R, Marinello F, Carmignato S, Enrichi F (2011) Modified Stober synthesis of highly luminescent dye-doped silica nanoparticles. J Nanopart Res 13(9):4349CrossRefGoogle Scholar
  23. 23.
    Rosa ILV, Oliveira LH, Longo E, Varela JA (2011) Synthesis and photoluminescence behavior of the Eu(3+) ions as a nanocoating over a silica Stober matrix. J Fluoresc 21(3):975CrossRefGoogle Scholar
  24. 24.
    Brambilla R, Radtke C, dos Santos JHZ, Miranda MSL (2010) Silica-magnesia mixed oxides prepared by a modified Stober route: structural and textural aspects. Powder Technol 198(3):337CrossRefGoogle Scholar
  25. 25.
    Park I, Ko SH, An YS, Choi KH, Chun H, Lee S (2009) Kim, G, monodisperse polystyrene-silica core-shell particles and silica hollow spheres prepared by the Stober method. J Nanosci Nanotechnol 9(12):7224Google Scholar
  26. 26.
    Kobayashi Y, Shimizu N, Misawa K, Takeda M, Ohuchi N, Kasuya A, Konno M (2008) Preparation of amine free silica-coated AgI nanoparticles with modified Stober method. Surf Eng 24(4):248CrossRefGoogle Scholar
  27. 27.
    Barnakov YA, Yu MH, Rosenzweig Z (2005) Manipulation of the magnetic properties of magnetite-silica nanocomposite materials by controlled Stober synthesis. Langmuir 21(16):7524CrossRefGoogle Scholar
  28. 28.
    Lee MH, Beyer FL, Furst EM (2005) Synthesis of monodisperse fluorescent core-shell silica particles using a modified Stober method for imaging individual particles in dense colloidal suspensions. J Colloid Interface Sci 288(1):114CrossRefGoogle Scholar
  29. 29.
    Kobayashi Y, Katakami H, Mine E, Nagao D, Konno M, Liz-Marzan LM (2005) Silica coating of silver nanoparticles using a modified Stober method. J Colloid Interface Sci 283(2):392CrossRefGoogle Scholar
  30. 30.
    Masalov VM, Sukhinina NS, Kudrenko EA, Emelchenko GA (2011) Mechanism of formation and nanostructure of Stober silica particles. Nanotechnology 22(27):275718ADSCrossRefGoogle Scholar
  31. 31.
    Terleczky P, Nyulaszi L (2009) The effect of the primary solvate shell on the mechanism of the Stober silica synthesis. A density functional investigation. J Phys Chem A 113(6):1096CrossRefGoogle Scholar
  32. 32.
    Chou KS, Chen CC (2008) The critical conditions for secondary nucleation of silica colloids in a batch Stober growth process. Ceram Int 34(7):1623CrossRefGoogle Scholar
  33. 33.
    Xu Y, Wu D, Sun YH, Gao HC, Yuan HZ, Deng F (2007) A new study on the kinetics of Stober synthesis by in-situ liquid Si-29 NMR. J Sol-Gel Sci Technol 42(1):13CrossRefGoogle Scholar
  34. 34.
    Nozawa K, Gailhanou H, Raison L, Panizza P, Ushiki H, Sellier E, Delville JP, Delville MH (2005) Smart control of monodisperse Stober silica particles: effect of reactant addition rate on growth process. Langmuir 21(4):1516CrossRefGoogle Scholar
  35. 35.
    Liu RL, Xu Y, Li ZH, Wu D, Sun YH, Gao HC, Yuan HZ, Deng F (2004) Liquid-state Si-29 NMR study on the chemical kinetics of Stober synthesis. Acta Chimica Sinica 62(1):22Google Scholar
  36. 36.
    Sun DX, Miao X, Zhang KJ, Kim H, Yuan YG (2011) Triazole-forming waterborne polyurethane composites fabricated with Silane coupling agent functionalized nano-silica. J Colloid Interface Sci 361(2):483CrossRefGoogle Scholar
  37. 37.
    Mallakpour S, Barati A (2011) Efficient preparation of hybrid nanocomposite coatings based on poly (vinyl alcohol) and silane coupling agent modified TiO(2) nanoparticles. Prog Org Coat 71(4):391CrossRefGoogle Scholar
  38. 38.
    Sabzi M, Mirabedini SM, Zohuriaan-Mehr J, Atai M (2009) Surface modification of TiO(2) nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Prog Org Coat 65(2):222CrossRefGoogle Scholar
  39. 39.
    Zhao HJ, Zhang ZJ, Fan JW (2008) The effects of addition of silane-coupling agents on the performance of magnetic nano-sized composite microspheres (MCM). Rare Met Mater Eng 37:733Google Scholar
  40. 40.
    Lu Y, Yin Y, Li ZY, Xia Y (2002) Synthesis and self-assembly of Au@SiO2 core–shell colloids. Nano Lett 2:785ADSCrossRefGoogle Scholar
  41. 41.
    Yin Y, Lu Y, Sun Y, Xia Y (2002) Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica. Nano Lett 2:427ADSCrossRefGoogle Scholar
  42. 42.
    Hardikar VV, Matijevic E (2000) Coating of nanosize silver particles with silica. J Colloid Interface Sci 221:133CrossRefGoogle Scholar
  43. 43.
    Ohmori M, Matijevic E (1993) Preparation and properties of uniform coated inorganic colloidal particles: 8. Silica on iron. J Colloid Interface Sci 160:288CrossRefGoogle Scholar
  44. 44.
    Teng HH, Xu SK, Wang M (2010) Controllable synthesis of different dimensions nano-ZnO by microemulsion and photocatalytic activity. J Inorg Mater 25(10):1034CrossRefGoogle Scholar
  45. 45.
    Chung CY, Lu CH (2010) Reverse-microemulsion preparation of visible-light-driven nano-sized BiVO(4). J Alloys Compd 502(1):L1CrossRefGoogle Scholar
  46. 46.
    Solanki JN, Murthy ZVP (2010) Highly monodisperse and sub-nano silver particles synthesis via microemulsion technique. Colloids Surf A Physicochem Eng Asp 359:31CrossRefGoogle Scholar
  47. 47.
    Cao M, Wu X, He X, Hu C (2005) Microemulsion-mediated solvothermal synthesis of SrCO3 nanostructures. Langmuir 21:6093CrossRefGoogle Scholar
  48. 48.
    Mi Y, Huang ZY, Zhou ZG, Hu FL, Meng QF (2009) Room-temperature preparation of BaMoO(4) nano-octahedra by microemulsion method. Chem Lett 38(5):404CrossRefGoogle Scholar
  49. 49.
    Zhu ZF, Geng CL, Yang J, Li JP, Yu WJ (2008) Microemulsion synthesis of ZrO(2) nano-powders and their properties. Rare Met Mater Eng 37:800Google Scholar
  50. 50.
    Pithan C, Shiratori Y, Waser R, Dornseiffer J, Haegel FH (2006) Preparation, processing, and characterization of nano-crystalline BaTiO3 powders and ceramics derived from microemulsion-mediated synthesis. J Am Ceram Soc 89(9):2908Google Scholar
  51. 51.
    Wu DC, Fu RW, Dresselhaus MS, Dresselhaus G (2006) Fabrication and nano-structure control of carbon aerogels via a microemulsion-templated sol-gel polymerization method. Carbon 44(4):675CrossRefGoogle Scholar
  52. 52.
    Bae DS, Han KS, Adair JH (2002) Synthesis of platinum/silica nanocomposite particles by reverse micelle and sol–gel processing. J Am Ceram Soc 85:1321CrossRefGoogle Scholar
  53. 53.
    Bae DS, Han KS, Adair JH (2002) Synthesis of Cu/SiO2 nanosize particles by a reverse micelle and sol-gel processing. J Mater Sci Lett 21:53CrossRefGoogle Scholar
  54. 54.
    Chung SH, Lee DW, Kim MS, Lee KY (2011) The synthesis of silica and silica–ceria, core–shell nanoparticles in a water-in-oil (W/O) microemulsion composed of heptane and water with the binary surfactants AOT and NP-5. J Colloid Interface Sci 355(1):70CrossRefGoogle Scholar
  55. 55.
    Mokari T, Sertchook H, Aharoni A, Ebenstein Y, Avnir D, Banin U (2005) Nano@micro: general method for entrapment of nanocrystals in sol–gel-derived composite hydrophobic silica spheres. Chem Mater 17:258CrossRefGoogle Scholar
  56. 56.
    Li T, Moon J, Morrone AA, Mecholsky JJ, Talham DR, Adair JH (1999) Preparation of Ag/SiO2 nanosize composites by a reverse micelle and sol–gel technique. Langmuir 15:4328CrossRefGoogle Scholar
  57. 57.
    Yi DK, Selvan ST, Lee SS, Papaefthymiou GC, Kundaliya D, Ying JY (2005) Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. J Am Chem Soc 127:4990CrossRefGoogle Scholar
  58. 58.
    Selvan ST, Tan TT, Ying JY (2005) Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence. Adv Mater 17:1620CrossRefGoogle Scholar
  59. 59.
    Gao X, Yu KM, Tam KY, Tsang SC (2003) Colloidal stable silica encapsulated nano-magnetic composite as a novel bio-catalyst carrier. Chem Commun 2998Google Scholar
  60. 60.
    Wang GN, Wang C, Dou WC, Ma Q, Yuan PF, Su XG (2009) The synthesis of magnetic and fluorescent bi-functional silica composite nanoparticles via reverse microemulsion method. J Fluoresc 19(6):939CrossRefGoogle Scholar
  61. 61.
    Charpentier PA, Li XS, Sui RH (2009) Study of the sol-gel reaction mechanism in supercritical CO(2) for the formation of SiO(2) nanocomposites. Langmuir 25(6):3748CrossRefGoogle Scholar
  62. 62.
    Jiao JX, Xu Q, Li LM, Tsubasa T, Kobayashi T (2008) Effect of PEG with different M-W as template direction reagent on preparation of porous TiO2/SiO2 with assistance of supercritical CO2. Colloid Polym Sci 286(13):1485CrossRefGoogle Scholar
  63. 63.
    Jiao JX, Xu Q, Li LM (2007) Porous TiO2/SiO2 composite prepared using PEG as template direction reagent with assistance of supercritical CO2. J Colloid Interface Sci 316(2):596CrossRefGoogle Scholar
  64. 64.
    Thakur R, Gupta RB (2005) Supercritical CO2 based silica coating of gold nanoparticles using water-in-Oil microemulsions. Ind Eng Chem Res 44:3086CrossRefGoogle Scholar
  65. 65.
    Thomann R, Nann T (2005) Single quantum dots in silica spheres by microemulsion synthesis. Chem Mater 17(23):5720CrossRefGoogle Scholar
  66. 66.
    Darbandi M, Urban G, Kruger M (2010) A facile synthesis method to silica coated CdSe/ZnS nanocomposites with tuneable size and optical properties. J Colloid Interface Sci 351(1):30CrossRefGoogle Scholar
  67. 67.
    Xiao Y, Gao ZY, Wu DP, Jiang Y, Liu N, Yi R, Jiang K (2011) Synthesis of nano-sized EuF(3) hollow spheres via one step chemical conversion. Mater Chem Phys 129:161CrossRefGoogle Scholar
  68. 68.
    Tang YW, Chen Y, Zhou P, Zhou YM, Lu LD, Bao JC, Lu TH (2010) Electro-catalytic performance of PdCo bimetallic hollow nano-spheres for the oxidation of formic acid. J Solid State Electrochem 14(11):2077CrossRefGoogle Scholar
  69. 69.
    Chen HM, Liu RS, Lo MY, Chang SC, Tsai LD, Peng YM, Lee JF (2008) Hollow platinum spheres with nano-channels: synthesis and enhanced catalysis for oxygen reduction. J Phys Chem C 112(20):7522CrossRefGoogle Scholar
  70. 70.
    Koo HJ, Kim YJ, Lee YH, Lee WI, Kim K, Park NG (2008) Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells. Adv Mater 20(1):195CrossRefGoogle Scholar
  71. 71.
    Watanabe M, Yamashita H, Chen X, Yamanaka J, Kotobuki M, Suzuki H, Uchida H (2007) Nano-sized Ni particles on hollow alumina ball: catalysts for hydrogen production. Appl Catal Environ 71:237CrossRefGoogle Scholar
  72. 72.
    Liu ZX, Park JN, Abdi SHR, Park SK, Park YK, Lee CW (2006) Nano-sized carbon hollow spheres for abatement of ethylene. Top Catal 39:221CrossRefGoogle Scholar
  73. 73.
    Bernard S, Salles V, Li JP, Brioude A, Bechelany M, Demirci UB, Miele P (2011) High-yield synthesis of hollow boron nitride nano-polyhedrons. J Mater Chem 21(24):8694CrossRefGoogle Scholar
  74. 74.
    Wang FL, Liu JR, Kong J, Zhang ZJ, Wang XZ, Itoh M, Machida K (2011) Template free synthesis and electromagnetic wave absorption properties of monodispersed hollow magnetite nano-spheres. J Mater Chem 21(12):4314ADSCrossRefGoogle Scholar
  75. 75.
    Li Y, Guo YQ, Tan RQ, Cui P, Li Y, Song WJ (2010) Selective synthesis of SnO(2) hollow microspheres and nano-sheets via a hydrothermal route. Chin Sci Bull 55(7):581CrossRefGoogle Scholar
  76. 76.
    Hosokawa S, Iwamoto S, Inoue M (2008) synthesis of nano-hollow-shaped rare earth oxides by glycothermal treatment of rare earth acetates and subsequent calcination. J Alloys Compd 457:510CrossRefGoogle Scholar
  77. 77.
    Tsai MS, Li MJ, Yen FH (2008) Synthesis of nano grade hollow silica sphere via a soft template method. J Nanosci Nanotechnol 8(6):3097CrossRefGoogle Scholar
  78. 78.
    Darbandi M, Thomann R, Nann T (2007) Hollow silica nanospheres: In situ, semi-in situ, and two-step synthesis. Chem Mater 19(7):1700CrossRefGoogle Scholar
  79. 79.
    Chen B, Jiao XL, Chen DR (2010) Size-controlled and size-designed synthesis of nano/submicrometer Ag particles. Cryst Growth Des 10(8):3378CrossRefGoogle Scholar
  80. 80.
    Shi XL, Wang S, Duan XL, Zhang QX (2008) Synthesis of nano Ag powder by template and spray pyrolysis technology. Mater Chem Phys 112(3):1110CrossRefGoogle Scholar
  81. 81.
    Tomonari M, Ida K, Imanishi H, Yonezawa T, Mori K, Yamashita H (2008) Effects of preparation conditions on the synthesis off nano-sized Ag metal particles by the wet-process using 3-mercapto-propionic acid. Res Chem Intermed 34:641CrossRefGoogle Scholar
  82. 82.
    Cavaliere-Jaricot S, Darbandi M, Nann T (2007) Au-silica nanoparticles by “reverse” synthesis of cores in hollow silica shells. Chem Commun 2031Google Scholar
  83. 83.
    Demchenko D, Robinson RD, Sadtler BC, Erdonmez K, Alivisatos AP, Wang LW (2008) Formation mechanism and properties of CdS-Ag2S nanorod superlattices. ACS Nano 2:627CrossRefGoogle Scholar
  84. 84.
    Peng P, Milliron DJ, Hughes SM, Johnson JC, Alivisatos AP, Saykally RJ (2005) Femtosecond spectroscopy of carrier relaxation dynamics in type II CdSe/CdTe tetrapod heteronanostructures. Nano Lett 5:1809ADSCrossRefGoogle Scholar
  85. 85.
    Liz-Marzan LM, Mulvaney P (2003) The assembly of coated nanocrystals. J Phys Chem B 107:7312CrossRefGoogle Scholar
  86. 86.
    Zou G, Ju H (2004) Electrogenerated chemiluminescence from a CdSe nanocrystal film and its sensing application in aqueous solution. Anal Chem 76:6871CrossRefGoogle Scholar
  87. 87.
    Zayats M, Baron R, Popov I, Willner I (2005) Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensor design. Nano Lett 5:21ADSCrossRefGoogle Scholar
  88. 88.
    Cordes DB, Gamsey S, Singaram B (2006) Fluorescent quantum dots with boronic acid substituted viologens to sense glucose in aqueous solutions. Angew Chem 118:3913CrossRefGoogle Scholar
  89. 89.
    Cavaliere-Jaricot S, Darbandi M, Kucur E, Nann T (2008) Silica coated quantum dots: a new tool for electrochemical and optical glucose detection. Microchim Acta 160:375CrossRefGoogle Scholar
  90. 90.
    Darbandi M, Urban G, Kruger M (2012) Bright luminescent, colloidal stable silica coated CdSe/ZnS nanocomposite by an in-situ, one-pot surface functionalization. J Colloid Interface Sci 365:41–45CrossRefGoogle Scholar
  91. 91.
    Salgueiriño-Maceira V, Correa-Duarte MA, Spasova M, Liz-Marzán LM, Farle M (2006) Composite silica spheres with magnetic and luminescent functionalities. Adv Funct Mater 16:509CrossRefGoogle Scholar
  92. 92.
    Quarta A, Corato RD, Manna L, Ragusa A, Pellegrino T (2007) Fluorescent-magnetic hybrid nanostructures: preparation, properties, and applications in biology. IEEE Trans Nanobioscience 6:298CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenDuisburgGermany

Personalised recommendations