Optical Properties of Oxide Nanomaterials

  • A. B. Djurišić
  • X. Y. Chen
  • J. A. Zapien
  • Y. H. Leung
  • A. M. C. Ng


This chapter discusses different methods of optical characterization of various metal oxide materials. Photoluminescence (room temperature, temperature-dependent, and time-resolved), cathodoluminescence, electroluminescence, UV-Vis spectroscopy, and Raman spectroscopy are discussed.


Oxygen Vacancy Green Emission Raman Spectroscopy Zinc Vacancy Metal Oxide Nanostructures 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Prof. Raymond W. Y. Wong from Hong Kong Baptist University for access to a fluorescence spectrometer.


  1. 1.
    Govender K, Boyle DS, O’Brien P, Binks D, West D, Coleman D (2002) Room-temperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition. Adv Mater 14(17):1221–1224CrossRefGoogle Scholar
  2. 2.
    Tkachenko NV (2006) Optical spectroscopy methods and instrumentations, 1st edn. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Wang XF, Zhao FL, Xie PB, Deng SZ, Xu NS, Wang HZ (2006) Surface emission characteristics of ZnO nanoparticles. Chem Phys Lett 423(4–6):361–365ADSCrossRefGoogle Scholar
  4. 4.
    Wang HQ, Wang GZ, Jia LC, Tang CJ, Li GH (2007) Polychromatic visible photoluminescence in porous ZnO nanotubes. J Phys D Appl Phys 40(21):6549–6553ADSCrossRefGoogle Scholar
  5. 5.
    Irimpan L, Nampoori VPN, Radhakrishnan P, Deepthy A, Krishnan B (2007) Size dependent fluorescence spectroscopy of nanocolloids of ZnO. J Appl Phys 102(6):063524ADSCrossRefGoogle Scholar
  6. 6.
    Ghosh A, Choudhary RNP (2009) Microstructural aspects for defect emission and E2 high phonon mode of ZnO thin films. J Appl Phys 105(12):124906ADSCrossRefGoogle Scholar
  7. 7.
    Senthilkumar V, Vickraman P (2010) Structural, optical and electrical studies on nanocrystalline tin oxide (SnO2) thin films by electron beam evaporation technique. J Mater Sci Mater Electron 21(6):578–583CrossRefGoogle Scholar
  8. 8.
    He TC, Chen R, Lin WW, Huang F, Sun HD (2011) Two-photon-pumped stimulated emission from ZnO single crystal. Appl Phys Lett 99(8):081902ADSCrossRefGoogle Scholar
  9. 9.
    He JH, Hsu JH, Wang CW, Lin HN, Chen LJ, Wang ZL (2006) Pattern and feature designed growth of ZnO nanowire arrays for vertical devices. J Phys Chem B 110(1):50–53CrossRefGoogle Scholar
  10. 10.
    Kumar DS, Biswas M, Byrne D, Bock M, McGlynn E, Breusing M, Grunwald R (2010) Multiphoton-absorption induced ultraviolet luminescence of ZnO nanorods using low-energy femtosecond pulses. J Appl Phys 108(4):043107ADSCrossRefGoogle Scholar
  11. 11.
    Dierre B, Yuan XL, Sekiguchi T (2010) Low-energy cathodoluminescence microscopy for the characterization of nanostructures. Sci Technol Adv Mater 11(4):043001CrossRefGoogle Scholar
  12. 12.
    Gilliland GD (1997) Photoluminescence spectroscopy of crystalline semiconductors. Mater Sci Engin R-Rep 18(3–6):99–399Google Scholar
  13. 13.
    Prasankumar RP, Taylor AJ (2011) Optical techniques for solid-state materials characterization. CRC Press, Boca RatonGoogle Scholar
  14. 14.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New YorkCrossRefGoogle Scholar
  15. 15.
    The Nobel Prize in Physics (1930).
  16. 16.
    Wood RW (1928) Wavelength shifts in scattered light. Nature 122(3071):349ADSCrossRefGoogle Scholar
  17. 17.
    Singh R (2002) C.V. Raman and the discovery of the Raman effect. Phys Perspect 4(4):399–420ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Cardona M, Merlin R (2007) Light scattering in solids IX. volume 108 of topics in applied physics, Springer, Berlin, pp 1–15Google Scholar
  19. 19.
    Popović ZV, Dohčević-Mitrović Z, Šćepanović M, Grujić-Brojčin M, Aškrabić S (2011) Raman scattering on nanomaterials and nanostructures. Annalen Der Physik 523(1–2, SI): 62–74.Google Scholar
  20. 20.
    Hamaguchi C (2001) Basic semiconductor physics. Springer, BerlinzbMATHCrossRefGoogle Scholar
  21. 21.
    Cardona M (1983) Light scattering in solids I: introductory concepts, vol 8, Topics in applied physics. Springer, BerlinGoogle Scholar
  22. 22.
    Cardona M, Guntherodt G (1982) Light scattering in solids II: basic concepts and instrumentation, vol 50. Topics in applied physics, Springer, BerlinCrossRefGoogle Scholar
  23. 23.
    McCreery RL (2000) Raman spectroscopy for chemical analysis. Wiley, New YorkCrossRefGoogle Scholar
  24. 24.
    Smith E, Dent G (2005) Modern Raman spectroscopy - a practical approach. Wiley, EnglandGoogle Scholar
  25. 25.
    Amer MS (2010) Raman spectroscopy, fullerenes and nanotechnology. The Royal Society of Chemistry, CambridgeGoogle Scholar
  26. 26.
    Laserna JJ (1996) Modern techniques in Raman spectroscopy. Wiley, EnglandGoogle Scholar
  27. 27.
    Frontiera RR, Mathies RA (2011) Femtosecond stimulated Raman spectroscopy. Laser Photon Rev 5(1):102–113CrossRefGoogle Scholar
  28. 28.
    Verma P, Ichimura T, Yano T, Saito Y, Kawata S (2010) Nano-imaging through tip-enhanced Raman spectroscopy: stepping beyond the classical limits. Laser Photon Rev 4(4):548–561CrossRefGoogle Scholar
  29. 29.
    Ray KG, McCreery RL (1997) Simplified calibration of instrument response function for Raman spectrometers based on luminescent intensity standards. Appl Spectros 51(1):108–116ADSCrossRefGoogle Scholar
  30. 30.
    Schulze G, Jirasek A, Yu MML, Lim A, Turner RFB, Blades MW (2005) Investigation of selected baseline removal techniques as candidates for automated implementation. Appl Spectros 59(5):545–574ADSCrossRefGoogle Scholar
  31. 31.
    Rowlands C, Elliott S (2011) Automated algorithm for baseline subtraction in spectra. J Raman Spectros 42(3):363–369ADSCrossRefGoogle Scholar
  32. 32.
    Leoni S, Ramlau R, Meier K, Schmidt M, Schwarz U (2008) Nanodomain fragmentation and local rearrangements in CdSe under pressure. Proc Nat Acad of Sci USA 105(50):19612–19616ADSCrossRefGoogle Scholar
  33. 33.
    Tolbert SH, Alivisatos AP (1995) The wurtzite to rock-salt structural transformation in CdSe nanocrystals under high-pressure. J Chem Phys 102(11):4642–4656ADSCrossRefGoogle Scholar
  34. 34.
    Tolbert SH, Alivisatos AP (1994) Size dependence of a first-order solid-solid phase-transition - the wurtzite to rock-salt transformation in CdSe nanocrystals. Science 265(5170):373–376ADSCrossRefGoogle Scholar
  35. 35.
    Khachadorian S, Papagelis K, Scheel H, Colli A, Ferrari AC, Thomsen C (2011) High pressure Raman scattering of silicon nanowires. Nanotechnology 22(19):195707ADSCrossRefGoogle Scholar
  36. 36.
    Qadri SB, Skelton EF, Dinsmore AD, Hu JZ, Kim WJ, Nelson C, Ratna BR (2001) The effect of particle size on the structural transitions in zinc sulfide. J Appl Phys 89(1):115–119ADSCrossRefGoogle Scholar
  37. 37.
    Wang ZW, Saxena SK, Pischedda V, Liermann HP, Zha CS (2001) In situ x-ray diffraction study of the pressure-induced phase transformation in nanocrystalline CeO2. Phys Rev B 64(1):012102ADSCrossRefGoogle Scholar
  38. 38.
    Pagnier T, Boulova M, Sergent N, Bouvier P, Lucazeau G (2007) Nanopowders and nanostructured oxides: phase transitions and surface reactivity. J Raman Spectros 38(6):756–761ADSCrossRefGoogle Scholar
  39. 39.
    Cui JB, Amtmann K, Ristein J, Ley L (1998) Noncontact temperature measurements of diamond by Raman scattering spectroscopy. J Appl Phys 83(12):7929–7933ADSCrossRefGoogle Scholar
  40. 40.
    Piscanec S, Cantoro M, Ferrari AC, Zapien JA, Lifshitz Y, Lee ST, Hofmann S, Robertson J (2003) Raman spectroscopy of silicon nanowires. Phys Rev B 68(24)Google Scholar
  41. 41.
    Khachadorian S, Scheel H, Cantoro M, Colli A, Ferrari AC, Thomsen C (2009) The morphology of silicon nanowire samples: a Raman study. Phys Status Solidi B Basic Solid State Phys 246(11–12SI):2809–2812ADSCrossRefGoogle Scholar
  42. 42.
    Scheel H, Reich S, Ferrari AC, Cantoro M, Colli A, Thomsen C (2006) Raman scattering on silicon nanowires: the thermal conductivity of the environment determines the optical phonon frequency. Appl Phys Lett 88(23):233114ADSCrossRefGoogle Scholar
  43. 43.
    Adu KW, Gutiérrez HR, Kim UJ, Eklund PC (2006) Inhomogeneous laser heating and phonon confinement in silicon nanowires: a micro-Raman scattering study. Phys Rev B 73(15):155333ADSCrossRefGoogle Scholar
  44. 44.
    Gupta R, Xiong Q, Adu CK, Kim UJ, Eklund PC (2003) Laser-induced Fano resonance scattering in silicon nanowires. Nano Letters 3(5):627–631ADSCrossRefGoogle Scholar
  45. 45.
    Adu KW, Xiong Q, Gutierrez HR, Chen G, Eklund PC (2006) Raman scattering as a probe of phonon confinement and surface optical modes in semiconducting nanowires. Appl Phys A Mater Sci Proc 85(3):287–297ADSCrossRefGoogle Scholar
  46. 46.
    Gu MX, Pan LK, Tay BK, Sun CQ (2007) Atomistic origin and temperature dependence of Raman optical redshift in nanostructures: a broken bond rule. J Raman Spectros 38(6):780–788ADSCrossRefGoogle Scholar
  47. 47.
    Gouadec G, Colomban P (2007) Raman spectroscopy of nanostructures and nanosized materials. J Raman Spectros 38(6):598–603ADSCrossRefGoogle Scholar
  48. 48.
    Arora AK, Rajalakshmi M, Ravindran TR, Sivasubramanian V (2007) Raman spectroscopy of optical phonon confinement in nanostructured materials. J Raman Spectros 38(6):604–617ADSCrossRefGoogle Scholar
  49. 49.
    Gouadec G, Colomban P (2007) Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Progr Crystal Growth Characteriz Mater 53(1):1–56CrossRefGoogle Scholar
  50. 50.
    Richter H, Wang ZP, Ley L (1981) The one phonon raman-spectrum in microcrystalline silicon. Solid State Commun 39(5):625–629ADSCrossRefGoogle Scholar
  51. 51.
    Campbell IH, Fauchet PM (1986) The effects of microcrystal size and shape on the one phonon raman-spectra of crystalline semiconductors. Solid State Commun 58(10):739–741ADSCrossRefGoogle Scholar
  52. 52.
    Roca E, Tralleroginer C, Cardona M (1994) Polar optical vibrational-modes in quantum dots. Phys Rev B 49(19):13704–13711ADSCrossRefGoogle Scholar
  53. 53.
    Zi J, Zhang KM, Xie XD (1997) Comparison of models for Raman spectra of Si nanocrystals. Phys Rev B 55(15):9263–9266ADSCrossRefGoogle Scholar
  54. 54.
    Fu HX, Ozolins V, Zunger A (1999) Phonons in GaP quantum dots. Phys Rev B 59(4):2881–2887ADSCrossRefGoogle Scholar
  55. 55.
    Cheng W, Ren SF, Yu PY (2003) Theoretical investigation of the surface vibrational modes in germanium nanocrystal. Phys Rev B 68(19):193309ADSCrossRefGoogle Scholar
  56. 56.
    Spanier JE, Robinson RD, Zheng F, Chan SW, Herman IP (2001) Size-dependent properties of CeO2−y nanoparticles as studied by Raman scattering. Phys Rev B 64(24):245407ADSCrossRefGoogle Scholar
  57. 57.
    Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoç H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98(4):041301ADSCrossRefGoogle Scholar
  58. 58.
    Djurišić AB, Leung YH (2006) Optical properties of ZnO nanostructures. Small 2(8–9):944–961CrossRefGoogle Scholar
  59. 59.
    Djurišić AB, Ng AMC, Chen XY (2010) ZnO nanostructures for optoelectronics: material properties and device applications. Progr Quant Electron 34(4):191–259ADSCrossRefGoogle Scholar
  60. 60.
    Willander M, Nur O, Zhao QX, Yang LL, Lorenz M, Cao BQ, Zuniga Perez J, Czekalla C, Zimmermann G, Grundmann M, Bakin A, Behrends A, Al-Suleiman M, El-Shaer A, Che Mofor A, Postels B, Waag A, Boukos N, Travlos A, Kwack HS, Guinard J, Dang DLS (2009) Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers. Nanotechnology 20(33):332001CrossRefGoogle Scholar
  61. 61.
    McCluskey MD, Jokela SJ (2009) Defects in ZnO. J Appl Phys 106(7):071101ADSCrossRefGoogle Scholar
  62. 62.
    Shen JH, Yeh SW, Mao SW, Huang HL, Huang YS, Gan D (2011) Visible photoluminescence of the (11\( \bar{2 } \)0), (10\( \bar{1 } \)1) and (0001) surfaces of ZnO nanofilms. Mater Lett 65(21–22):3333–3335Google Scholar
  63. 63.
    Lautenschlaeger S, Sann J, Volbers N, Meyer BK, Hoffmann A, Haboeck U, Wagner MR (2008) Asymmetry in the excitonic recombinations and impurity incorporation of the two polar faces of homoepitaxially grown ZnO films. Phys Rev B 77(14):144108ADSCrossRefGoogle Scholar
  64. 64.
    Kim MD, Oh JE, Kim SG, Yang WC (2011) Hydrogen passivation effect on the yellow-green emission band and bound exciton in n-ZnO. Solid State Commun 151(10):768–770ADSCrossRefGoogle Scholar
  65. 65.
    Chen H, Gu SL, Tang K, Zhu SM, Zhu ZB, Ye JD, Zhang R, Zheng YD (2011) Origins of green band emission in high-temperature annealed N-doped ZnO. J Luminescence 131(6):1189–1192ADSCrossRefGoogle Scholar
  66. 66.
    Vanheusden K, Seager CH, Warren WL, Tallant DR, Voigt JA (1996) Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl Phys Lett 68(3):403–405ADSCrossRefGoogle Scholar
  67. 67.
    Sharma PK, Pandey AC, Zolnierkiewicz G, Guskos N, Rudowicz C (2009) Relationship between oxygen defects and the photoluminescence property of ZnO nanoparticles: a spectroscopic view. J Appl Phys 106(9):094314ADSCrossRefGoogle Scholar
  68. 68.
    Kim Y, Kang S (2011) Investigation of photoluminescence mechanisms of ZnO through experimental and first-principles calculation methods. Acta Mater 59(1):126–132CrossRefGoogle Scholar
  69. 69.
    Chen R, Tay Y, Ye J, Zhao Y, Xing GZ, Wu T, Sun HD (2010) Investigation of structured green-band emission and electron-phonon interactions in vertically aligned ZnO nanowires. J Phys Chem C 114(41):17889–17893CrossRefGoogle Scholar
  70. 70.
    Wang ZG, Zu XT, Zhu S, Wang LM (2006) Green luminescence originates from surface defects in ZnO nanoparticles. Phys E-Low-Dimen Syst Nanostruct 35(1):199–202ADSCrossRefGoogle Scholar
  71. 71.
    Xue HZ, Pan N, Zeng RG, Li M, Sun X, Ding ZJ, Wang XP, Hou JG (2009) Probing the surface effect on deep-level emissions of an individual ZnO nanowire via spatially resolved cathodoluminescence. J Phys Chem C 113(29):12715–12718CrossRefGoogle Scholar
  72. 72.
    Bera A, Basak D (2009) Correlation between the microstructure and the origin of the green luminescence in ZnO: a case study on the thin films and nanowires. Chem Phys Lett 476(4–6):262–266ADSCrossRefGoogle Scholar
  73. 73.
    Gong YY, Andelman T, Neumark GF, O’Brien S, Kuskovsky IL (2007) Origin of defect related green emission from ZnO nanoparticles: effect of surface modification. Nanoscale Res Lett 2(6):297–302ADSCrossRefGoogle Scholar
  74. 74.
    He HP, Yang Q, Liu C, Sun LW, Ye ZZ (2011) Size-dependent surface effects on the photoluminescence in ZnO nanorods. J Phys Chem C 115(1):58–64CrossRefGoogle Scholar
  75. 75.
    Wang FF, Cao L, Pan AL, Liu RB, Wang X, Zhu X, Wang SQ, Zou BS (2007) Synthesis of tower-like ZnO structures and visible photoluminescence origins of varied-shaped ZnO nanostructures. J Phys Chem C 111(21):7655–7660CrossRefGoogle Scholar
  76. 76.
    Norberg NS, Gamelin DR (2005) Influence of surface modification on the luminescence of colloidal ZnO nanocrystals. J Phys Chem B 109(44):20810–20816CrossRefGoogle Scholar
  77. 77.
    Djurišić AB, Leung YH, Tam KH, Hsu YF, Ding L, Ge WK, Zhong YC, Wong KS, Chan WK, Tam HL, Cheah KW, Kwok WM, Phillips DL (2007) Defect emissions in ZnO nanostructures. Nanotechnology 18(9):095702ADSCrossRefGoogle Scholar
  78. 78.
    Kahn ML, Cardinal T, Bousquet B, Monge M, Jubera V, Chaudret B (2006) Optical properties of zinc oxide nanoparticles and nanorods synthesized using an organometallic method. Chemphyschem 7(11):2392–2397CrossRefGoogle Scholar
  79. 79.
    Kurbanov SS, Panin GN, Kim TW, Kang TW (2009) Strong violet luminescence from ZnO nanocrystals grown by the low-temperature chemical solution deposition. J Luminescence 129(9):1099–1104ADSCrossRefGoogle Scholar
  80. 80.
    Alam Khan M, Jung HT, Yang OB (2006) Synthesis and characterization of ultrahigh crystalline TiO2 nanotubes. J Phys Chem B 110(13):6626–6630CrossRefGoogle Scholar
  81. 81.
    Ahn CH, Kim YY, Kim DC, Mohanta SK, Cho HK (2009) A comparative analysis of deep level emission in ZnO layers deposited by various methods. J Appl Phys 105(1):013502ADSCrossRefGoogle Scholar
  82. 82.
    Cao BQ, Cai WP, Zeng HB (2006) Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays. Appl Phys Lett 88(16):161101ADSCrossRefGoogle Scholar
  83. 83.
    Djurišić AB, Leung YH, Tam KH, Ding L, Ge WK, Chen HY, Gwo S (2006) Green, yellow, and orange defect emission from ZnO nanostructures: influence of excitation wavelength. Appl Phys Lett 88(10):103107ADSCrossRefGoogle Scholar
  84. 84.
    Shih HY, Chen YT, Huang NH, Wei CM, Chen YF (2011) Tunable photoluminescence and photoconductivity in ZnO one-dimensional nanostructures with a second below-gap beam. J Appl Phys 109(10):103523ADSCrossRefGoogle Scholar
  85. 85.
    Zhong Y, Djurišić AB, Hsu YF, Wong KS, Brauer G, Ling CC, Chan WK (2008) Exceptionally long exciton photoluminescence lifetime in ZnO tetrapods. J Phys Chem C 112(42):16286–16295CrossRefGoogle Scholar
  86. 86.
    Gargas DJ, Gao HW, Wang HT, Yang PD (2011) High quantum efficiency of band-edge emission from ZnO nanowires. Nano Lett 11(9):3792–3796ADSCrossRefGoogle Scholar
  87. 87.
    Lee SK, Chen SL, Hongxing D, Sun L, Chen Z, Chen WM, Buyanova IA (2010) Long lifetime of free excitons in ZnO tetrapod structures. Appl Phys Lett 96(8):083104ADSCrossRefGoogle Scholar
  88. 88.
    Robin IC, Gauron B, Ferret P, Tavares C, Feuillet G, Dang LS, Gayral B, Gérard JM (2007) Evidence for low density of nonradiative defects in ZnO nanowires grown by metal organic vapor-phase epitaxy. Appl Phys Lett 91(14):143120ADSCrossRefGoogle Scholar
  89. 89.
    Tam KH, Cheung CK, Leung YH, Djurišić AB, Ling CC, Beling CD, Fung S, Kwok WM, Chan WK, Phillips DL, Ding L, Ge WK (2006) Defects in ZnO nanorods prepared by a hydrothermal method. J Phys Chem B 110(42):20865–20871CrossRefGoogle Scholar
  90. 90.
    Lupan O, Pauporté T, Tiginyanu IM, Ursaki VV, Sontea V, Ono LK, Roldan Cuenya B, Chow L (2011) Comparative study of hydrothermal treatment and thermal annealing effects on the properties of electrodeposited micro-columnar ZnO thin films. Thin Solid Films 519(22):7738–7749ADSCrossRefGoogle Scholar
  91. 91.
    Lupan O, Pauporté T (2010) Hydrothermal treatment for the marked structural and optical quality improvement of ZnO nanowire arrays deposited on lightweight flexible substrates. J Cryst Growth 312(16–17):2454–2458ADSCrossRefGoogle Scholar
  92. 92.
    Chen XY, Ng AMC, Djurišić AB, Ling CC, Chan WK (2012) Hydrothermal treatment of ZnO Nanostructures. Thin Solid Films 520:2656–2662Google Scholar
  93. 93.
    Ali M, Winterer M (2010) ZnO nanocrystals: surprisingly ‘Alive’. Chem Mater 22(1):85–91CrossRefGoogle Scholar
  94. 94.
    Merz TA, Doutt DR, Bolton T, Dong Y, Brillson LJ (2011) Nanostructure growth-induced defect formation and band bending at ZnO surfaces. Surface Sci 605(9–10):L20–L23ADSCrossRefGoogle Scholar
  95. 95.
    Bastin D, Lavrov EV, Weber J (2011) Metastable state of the VZnH2 defect in ZnO. Phys Rev B 83(19):195210ADSCrossRefGoogle Scholar
  96. 96.
    Chang HP, Wang FH, Wu JY, Kung CY, Liu HW (2010) Enhanced conductivity of aluminum doped ZnO films by hydrogen plasma treatment. Thin Solid Films 518(24SI):7445–7449ADSCrossRefGoogle Scholar
  97. 97.
    Dev A, Richters JP, Sartor J, Kalt H, Gutowski J, Voss T (2011) Enhancement of the near-band-edge photoluminescence of ZnO nanowires: important role of hydrogen incorporation versus plasmon resonances. Appl Phys Lett 98(13):131111ADSCrossRefGoogle Scholar
  98. 98.
    Wang DF, Lu HB, Li JC, Wu Y, Tian Y, Lee YP (2009) Effects of low-energy hydrogen ion implantation on optical properties of ZnO nanowires. Mater Res Bull 44(1):41–44CrossRefGoogle Scholar
  99. 99.
    Cai PF, You JB, Zhang XW, Dong JJ, Yang XL, Yin ZG, Chen NF (2009) Enhancement of conductivity and transmittance of ZnO films by post hydrogen plasma treatment. J Appl Phys 105(8):083713ADSCrossRefGoogle Scholar
  100. 100.
    Dong JJ, Zhang XW, You JB, Cai PF, Yin ZG, An Q, Ma XB, Jin P, Wang ZG, Chu PK (2010) Effects of hydrogen plasma treatment on the electrical and optical properties of ZnO films: identification of hydrogen donors in ZnO. ACS Appl Mater Interf 2(6):1780–1784CrossRefGoogle Scholar
  101. 101.
    Li XN, Keyes B, Asher S, Zhang SB, Wei SH, Coutts TJ, Limpijumnong S, Van de Walle CG (2005) Hydrogen passivation effect in nitrogen-doped ZnO thin films. Appl Phys Lett 86(12):122107ADSCrossRefGoogle Scholar
  102. 102.
    Escobedo-Morales A, Pal U (2008) Defect annihilation and morphological improvement of hydrothermally grown ZnO nanorods by Ga doping. Appl Phys Lett 93(19):193120ADSCrossRefGoogle Scholar
  103. 103.
    Yang Y, Tay BK, Sun XW, Sze JY, Han ZJ, Wang JX, Zhang XH, Li YB, Zhang S (2007) Quenching of surface-exciton emission from ZnO nanocombs by plasma immersion ion implantation. Appl Phys Lett 91(7):071921ADSCrossRefGoogle Scholar
  104. 104.
    Mendelsberg RJ, Allen MW, Durbin SM, Reeves RJ (2011) Photoluminescence and the exciton-phonon coupling in hydrothermally grown ZnO. Phys Rev B 83(20):205202ADSCrossRefGoogle Scholar
  105. 105.
    Herklotz F, Lavrov EV, Weber J, Mamin GV, Kutin YS, Volodin MA, Orlinskii SB (2011) Identification of shallow Al donors in ZnO. Phys Status Solidi B Basic Solid State Phys 248(6):1532–1537ADSCrossRefGoogle Scholar
  106. 106.
    Brandt M, von Wenckstern H, Benndorf G, Lange M, Dietrich CP, Kranert C, Sturm C, Schmidt-Grund R, Hochmuth H, Lorenz M, Grundmann M, Wagner MR, Alic M, Nenstiel C, Hoffmann A (2010) Identification of a donor-related recombination channel in ZnO thin films. Phys Rev B 81(7):073306ADSCrossRefGoogle Scholar
  107. 107.
    Al-Suleiman M, Che Mofor A, El-Shaer A, Bakin A, Wehmann HH, Waag A (2006) Photoluminescence properties: catalyst-free ZnO nanorods and layers versus bulk ZnO. Appl Phys Lett 89(23):231911ADSCrossRefGoogle Scholar
  108. 108.
    Grabowska J, Meaney A, Nanda KK, Mosnier JP, Henry MO, Duclère JR, McGlynn E (2005) Surface excitonic emission and quenching effects in ZnO nanowire/nanowall systems: limiting effects on device potential. Phys Rev B 71(11):115439ADSCrossRefGoogle Scholar
  109. 109.
    Biswas M, Jung YS, Kim HK, Kumar K, Hughes GJ, Newcomb S, Henry MO, McGlynn E (2011) Microscopic origins of the surface exciton photoluminescence peak in ZnO nanostructures. Phys Rev B 83(23):235320ADSCrossRefGoogle Scholar
  110. 110.
    Ding L, Li BK, He HT, Ge WK, Wang JN, Ning JQ, Dai XM, Ling CC, Xu SJ (2009) Classification of bound exciton complexes in bulk ZnO by magnetophotoluminescence spectroscopy. J Appl Phys 105(5):053511ADSCrossRefGoogle Scholar
  111. 111.
    Meyer BK, Sann J, Eisermann S, Lautenschlaeger S, Wagner MR, Kaiser M, Callsen G, Reparaz JS, Hoffmann A (2010) Excited state properties of donor bound excitons in ZnO. Phys Rev B 82(11):115207ADSCrossRefGoogle Scholar
  112. 112.
    Nam YS, Lee SW, Baek KS, Chang SK, Song JH, Song JH, Han SK, Hong SK, Yao T (2008) Anisotropic optical properties of free and bound excitons in highly strained A-plane ZnO investigated with polarized photoreflectance and photoluminescence spectroscopy. Appl Phys Lett 92(20):201907ADSCrossRefGoogle Scholar
  113. 113.
    Johnston K, Henry MO, McCabe D, McGlynn E, Dietrich M, Alves E, Xia M (2006) Identification of donor-related impurities in ZnO using photoluminescence and radiotracer techniques. Phys Rev B 73(16):165212ADSCrossRefGoogle Scholar
  114. 114.
    Müller S, Stichtenoth D, Uhrmacher M, Hofsäss H, Ronning C, Röder J (2007) Unambiguous identification of the PL-I 9 line in zinc oxide. Appl Phys Lett 90(1):012107ADSCrossRefGoogle Scholar
  115. 115.
    Johnston K, Cullen J, Henry MO, McGlynn E, Stachura M (2011) Evidence for As lattice location and Ge bound exciton luminescence in ZnO implanted with 73As and 73Ge. Phys Rev 83(12):125205ADSCrossRefGoogle Scholar
  116. 116.
    Fallert J, Hauschild R, Stelzl F, Urban A, Wissinger M, Zhou HJ, Klingshirn C, Kalt H (2007) Surface-state related luminescence in ZnO nanocrystals. J Appl Phys 101(7):073506ADSCrossRefGoogle Scholar
  117. 117.
    Tainoff D, Masenelli B, Mélinon P, Belsky A, Ledoux G, Amans D, Dujardin C, Fedorov N, Martin P (2010) Competition between exciton-phonon interaction and defects states in the 3.31 eV band in ZnO. Phys Rev 81(11):115304CrossRefGoogle Scholar
  118. 118.
    Wagner MR, Callsen G, Reparaz JS, Schulze JH, Kirste R, Cobet M, Ostapenko IA, Rodt S, Nenstiel C, Kaiser M, Hoffmann A, Rodina AV, Phillips MR, Lautenschläger S, Eisermann S, Meyer BK (2011) Bound excitons in ZnO: structural defect complexes versus shallow impurity centers. Phys Rev B 84(3):035313ADSCrossRefGoogle Scholar
  119. 119.
    Kurbanov SS, Panin GN, Kang TW (2009) Spatially resolved investigations of the emission around 3.31 eV (A-line) from ZnO nanocrystals. Appl Phys Lett 95(21): 211902.Google Scholar
  120. 120.
    Thonke K, Schirra M, Schneider R, Reiser A, Prinz GM, Feneberg M, Sauer R, Biskupek J, Kaiser U (2010) The role of stacking faults and their associated 0.13 eV acceptor state in doped and undoped ZnO layers and nanostructures. Phys Status Solidi B-Basic Solid State Phys 247(6): 1464–1468.Google Scholar
  121. 121.
    Schirra M, Schneider R, Reiser A, Prinz GM, Feneberg M, Biskupek J, Kaiser U, Krill CE, Thonke K, Sauer R (2008) Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide. Phys Rev B 77(12): 125215Google Scholar
  122. 122.
    Hamby DW, Lucca DA, Lee JK, Nastasi M, Kang HS, Lee SY (2006) Effects of hydrogen implantation on the photoluminescence and carrier mobility of ZnO films. Nucl Inst Meth Phys Res Sect B Beam Interact Mater Atoms 249:196–199ADSCrossRefGoogle Scholar
  123. 123.
    Fonoberov VA, Alim KA, Balandin AA, Xiu FX, Liu JL (2006) Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals. Phys Rev B 73(16):165317ADSCrossRefGoogle Scholar
  124. 124.
    Lin KF, Cheng HM, Hsu HC, Lin LJ, Hsieh WF (2005) Band gap variation of size-controlled ZnO quantum dots synthesized by sol-gel method. Chem Phys Lett 409(4–6):208–211ADSCrossRefGoogle Scholar
  125. 125.
    Cheng HM, Lin KF, Hsu HC, Hsieh WF (2006) Size dependence of photoluminescence and resonant Raman scattering from ZnO quantum dots. Appl Phys Lett 88(26):261909ADSCrossRefGoogle Scholar
  126. 126.
    Lu JG, Ye ZZ, Zhang YZ, Liang QL, Fujita SZ, Wang ZL (2006) Self-assembled ZnO quantum dots with tunable optical properties. Appl Phys Lett 89(2):023122ADSCrossRefGoogle Scholar
  127. 127.
    Fu ZD, Cui YS, Zhang SY, Chen J, Yu DP, Zhang SL, Niu L, Jiang JZ (2007) Study on the quantum confinement effect on ultraviolet photoluminescence of crystalline ZnO nanoparticles with nearly uniform size. Appl Phys Lett 90(26):263113ADSCrossRefGoogle Scholar
  128. 128.
    Zhang LY, Yin LW, Wang CX, Lun N, Qi YX, Xiang D (2010) Origin of visible photoluminescence of ZnO quantum dots: defect-dependent and size-dependent. J Phys Chem C 114(21):9651–9658CrossRefGoogle Scholar
  129. 129.
    Xiong G, Pal U, Serrano JG (2007) Correlations among size, defects, and photoluminescence in ZnO nanoparticles. J Appl Phys 101(2):024317ADSCrossRefGoogle Scholar
  130. 130.
    Liu KW, Chen R, Xing GZ, Wu T, Sun HD (2010) Photoluminescence characteristics of high quality ZnO nanowires and its enhancement by polymer covering. Appl Phys Lett 96(2):023111ADSCrossRefGoogle Scholar
  131. 131.
    Yang BQ, Kumar A, Feng P, Katiyar RS (2008) Structural degradation and optical property of nanocrystalline ZnO films grown on Si (100). Appl Phys Lett 92(23):233112ADSCrossRefGoogle Scholar
  132. 132.
    Voss T, Bekeny C, Wischmeier L, Gafsi H, Boerner S, Schade W, Mofor AC, Bakin A, Waag A (2006) Influence of exciton-phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires. Appl Phys Lett 89(18):182107ADSCrossRefGoogle Scholar
  133. 133.
    Zhang XX, Liu DF, Zhang LH, Li WL, Gao M, Ma WJ, Ren Y, Zeng QS, Niu ZO, Zhou WY, Xie SS (2009) Synthesis of large-scale periodic ZnO nanorod arrays and its blue-shift of UV luminescence. J Mater Chem 19(7):962–969CrossRefGoogle Scholar
  134. 134.
    Hong WK, Jo G, Choe M, Lee T, Sohn JI, Welland ME (2009) Influence of surface structure on the phonon-assisted emission process in the ZnO nanowires grown on homoepitaxial films. Appl Phys Lett 94(4):043103ADSCrossRefGoogle Scholar
  135. 135.
    Ahn CH, Mohanta SK, Lee NE, Cho HK (2009) Enhanced exciton-phonon interactions in photoluminescence of ZnO nanopencils. Appl Phys Lett 94(26):261904ADSCrossRefGoogle Scholar
  136. 136.
    Yang YH, Chen XY, Feng Y, Yang GW (2007) Physical mechanism of blue-shift of UV luminescence of a single pencil-like ZnO nanowire. Nano Lett 7(12):3879–3883ADSCrossRefGoogle Scholar
  137. 137.
    Chang PC, Chien CJ, Stichtenoth D, Ronning C, Lu JG (2007) Finite size effect in ZnO nanowires. Appl Phys Lett 90(11):113101ADSCrossRefGoogle Scholar
  138. 138.
    Mohanta SK, Tripathy S, Soh CB, Kim DC, Kong BH, Cho HK (2010) Emission characteristics of ZnO nanorods on nanosilicon-on-insulator: competition between exciton-phonon coupling and surface resonance effect. J Phys D Appl Phys 43(14):145404ADSCrossRefGoogle Scholar
  139. 139.
    Chen CW, Chen KH, Shen CH, Ganguly A, Chen LC, Wu JJ, Wen HI, Pong WF (2006) Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime. Appl Phys Lett 88(24):241905ADSCrossRefGoogle Scholar
  140. 140.
    Reparaz JS, Gueell F, Wagner MR, Hoffmann A, Cornet A, Morante JR (2010) Size-dependent recombination dynamics in ZnO nanowires. Appl Phys Lett 96(5):053105ADSCrossRefGoogle Scholar
  141. 141.
    Kim SY, Yeon YS, Park SM, Kim JH, Song JK (2008) Exciton states of quantum confined ZnO nanorods. Chem Phys Lett 462(1–3):100–103ADSCrossRefGoogle Scholar
  142. 142.
    Kwok WM, Djurišić AB, Leung YH, Chan WK, Phillips DL (2005) Time-resolved photoluminescence study of the stimulated emission in ZnO nanoneedles. Appl Phys Lett 87(9):093108ADSCrossRefGoogle Scholar
  143. 143.
    Suzuki K, Inoguchi M, Fujita K, Murai S, Tanaka K, Tanaka N, Ando A, Takagi H (2010) High-density excitation effect on photoluminescence in ZnO nanoparticles. J Appl Phys 107(12):124311ADSCrossRefGoogle Scholar
  144. 144.
    Dai J, Xu CX, Sun XW, Zhang XH (2011) Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities. Appl Phys Lett 98(16):161110ADSCrossRefGoogle Scholar
  145. 145.
    Czekalla C, Nobis T, Rahm A, Cao BQ, Zúñiga Pérez J, Sturm C, Schmidt-Grund R, Lorenz M, Grundmann M (2010) Whispering gallery modes in zinc oxide micro- and nanowires. Physica Status Solidi B-Basic Solid State Phy 247(6):1282–1293ADSCrossRefGoogle Scholar
  146. 146.
    Wang T, Radovanovic PV (2011) Size-dependent electron transfer and trapping in strongly luminescent colloidal gallium oxide nanocrystals. J Phys Chem C 115(38):18473–18478CrossRefGoogle Scholar
  147. 147.
    Lee SY, Shin YH, Kim Y, Kim S, Ju S (2011) Emission characteristics of diameter controlled SnO2 nanowires. J Luminescence 131(12):2565–2568ADSCrossRefGoogle Scholar
  148. 148.
    Peng MF, Li Y, Gao J, Zhang D, Jiang Z, Sun XH (2011) Electronic structure and photoluminescence origin of single-crystalline germanium oxide nanowires with green light emission. J Phys Chem C 115(23):11420–11426CrossRefGoogle Scholar
  149. 149.
    Xing GZ, Yi JB, Wang DD, Liao L, Yu T, Shen ZX, Huan CHA, Sum TC, Ding J, Wu T (2009) Strong correlation between ferromagnetism and oxygen deficiency in Cr-doped In2O3−δ nanostructures. Phys Rev B 79(17):174406ADSCrossRefGoogle Scholar
  150. 150.
    Kumar M, Singh VN, Singh F, Lakshmi KV, Mehta BR, Singh JP (2008) On the origin of photoluminescence in indium oxide octahedron structures. Appl Phys Lett 92(17):171907ADSCrossRefGoogle Scholar
  151. 151.
    Chen HT, Wu XL, Xiong SJ, Zhang WC, Zhu J (2009) Red photoluminescence mechanism in SnO2 nanostructures. Appl Phys A Mater Sci Process 97(2):365–368ADSCrossRefGoogle Scholar
  152. 152.
    Lettieri S, Causà M, Setaro A, Trani F, Barone V, Ninno D, Maddalena P (2008) Direct role of surface oxygen vacancies in visible light emission of tin dioxide nanowires. J Chem Phys 129(24):244710ADSCrossRefGoogle Scholar
  153. 153.
    Luo SH, Fan JY, Liu WL, Zhang M, Song ZT, Lin CL, Wu XL, Chu PK (2006) Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts. Nanotechnology 17(6):1695–1699ADSCrossRefGoogle Scholar
  154. 154.
    Kar A, Strosciom MA, Meyyappan M, Gosztola DJ, Wiederrecht GP, Dutta M (2011) Tailoring the surface properties and carrier dynamics in SnO2 nanowires. Nanotechnology 22(28):285709CrossRefGoogle Scholar
  155. 155.
    Luo SH, Chu PK, Liu WL, Zhang M, Lin CL (2006) Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients. Appl Phys Lett 88(18):183112ADSCrossRefGoogle Scholar
  156. 156.
    Das SK, Bhunia MK, Bhaumik A (2010) Self-assembled TiO2 nanoparticles: mesoporosity, optical and catalytic properties. Dalton Trans 39(18):4382–4390CrossRefGoogle Scholar
  157. 157.
    Jin C, Kim H, Lee WI, Lee C (2011) Ultraintense luminescence in semiconducting-material-sheathed MgO nanorods. Adv Mater 23(17):1982–1987CrossRefGoogle Scholar
  158. 158.
    Chen R, Xing GZ, Gao J, Zhang Z, Wu T, Sun HD (2009) Characteristics of ultraviolet photoluminescence from high quality tin oxide nanowires. Appl Phys Lett 95(6):061908ADSCrossRefGoogle Scholar
  159. 159.
    Liu B, Cheng CW, Chen R, Shen ZX, Fan HJ, Sun HD (2010) Fine structure of ultraviolet photoluminescence of tin oxide nanowires. J Phys Chem C 114(8):3407–3410CrossRefGoogle Scholar
  160. 160.
    Wei ZP, Guo DL, Liu B, Chen R, Wong LM, Yang WF, Wang SJ, Sun HD, Wu T (2010) Ultraviolet light emission and excitonic fine structures in ultrathin single-crystalline indium oxide nanowires. Appl Phys Lett 96(3):031902ADSCrossRefGoogle Scholar
  161. 161.
    Pfüller C, Brandt O, Flissikowski T, Grahn HT, Ive T, Speck JS, Den-Baars SP (2011) Comparison of the spectral and temporal emission characteristics of homoepitaxial and heteroepitaxial ZnO nanowires. Appl Phys Lett 98(11):113113ADSCrossRefGoogle Scholar
  162. 162.
    Yamamoto S, Yano H, Mishina T, Nakahara J (2007) Decay dynamics of ultraviolet photo-luminescence in ZnO nanocrystals. J Luminescence 126(1):257–262ADSCrossRefGoogle Scholar
  163. 163.
    Pozina G, Yang LL, Zhao QX, Hultman L, Lagoudakis PG (2010) Size dependent carrier recombination in ZnO nanocrystals. Appl Phys Lett 97(13):131909ADSCrossRefGoogle Scholar
  164. 164.
    Hong SS, Joo T, Park WI, Jun YH, Yi GC (2003) Time-resolved photoluminescence of the size-controlled ZnO nanorods. Appl Phys Lett 83(20):4157–4159ADSCrossRefGoogle Scholar
  165. 165.
    Klason P, Borseth TM, Zhao QX, Svensson BG, Yu A, Kuznetsov P, Bergman J, Willander M (2008) Temperature dependence and decay times of zinc and oxygen vacancy related photoluminescence bands in zinc oxide. Solid State Commun 145(5–6):321–326ADSCrossRefGoogle Scholar
  166. 166.
    Baxter JB, Schmuttenmaer CA (2006) Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. J Phys Chem B 110(50):25229–25239CrossRefGoogle Scholar
  167. 167.
    Zhong YC, Wong KS, Djurišić AB, Hsu YF (2009) Study of optical transitions in an individual ZnO tetrapod using two-photon photoluminescence excitation spectrum. Appl Phys B Lasers Optics 97(1):125–128ADSCrossRefGoogle Scholar
  168. 168.
    Zhang CF, Dong ZW, You GJ, Qian SX, Deng H, Gao H, Yang LP, Li Y (2005) Observation of two-photon-induced photoluminescence in ZnO microtubes. Appl Phys Lett 87(5):051920ADSCrossRefGoogle Scholar
  169. 169.
    Zhang CF, Zhang F, Sun XW, Yang Y, Wang J, Xu J (2009) Frequency-upconverted whispering-gallery-mode lasing in ZnO hexagonal nanodisks. Opt Lett 34(21):3349–3351ADSCrossRefGoogle Scholar
  170. 170.
    Zhang CF, Dong ZW, Liu KJ, Yan YL, Qianb SX, Deng H (2007) Multiphoton absorption pumped ultraviolet stimulated emission from ZnO microtubes. Appl Phys Lett 91(14):142109ADSCrossRefGoogle Scholar
  171. 171.
    Chattopadhyay M, Kumbhakar P, Tiwary CS, Mitra AK, Chatterjee U, Kobayashi T (2009) Three-photon-induced four-photon absorption and nonlinear refraction in ZnO quantum dots. Opt Lett 34(23):3644–3646ADSCrossRefGoogle Scholar
  172. 172.
    Chia CH, Lai YJ, Han TC, Chiou JW, Hu YM, Chou WC (2010) High-excitation effect on photoluminescence of sol-gel ZnO nanopowder. Appl Phys Lett 96(8):081903ADSCrossRefGoogle Scholar
  173. 173.
    House RL, Kirschbrown JR, Mehl BP, Gabriel MM, Puccio JA, Parker JK, Papanikolas JM (2011) Characterizing electron-hole plasma dynamics at different points in individual ZnO rods. J Phys Chem C 115(43):21436–21442CrossRefGoogle Scholar
  174. 174.
    Sieber B, Addad A, Szunerits S, Boukherroub R (2010) Stacking faults-induced quenching of the UV luminescence in ZnO. J Phys Chem Lett 1(20):3033–3038CrossRefGoogle Scholar
  175. 175.
    Brillson LJ, Mosbacker HL, Doutt DL, Dong Y, Fang ZQ, Look DC, Cantwell G, Zhang J, Song JJ (2009) Nanoscale depth-resolved cathodoluminescence spectroscopy of ZnO surfaces and metal interfaces. Superlattices Microstruct 45(4–5):206–213ADSCrossRefGoogle Scholar
  176. 176.
    Coleman VA, Bradby JE, Jagadish C, Phillips MR (2006) Observation of enhanced defect emission and excitonic quenching from spherically indented ZnO. Appl Phys Lett 89(8):082102ADSCrossRefGoogle Scholar
  177. 177.
    Foley M, Ton-That C, Phillips MR (2008) Cathodoluminescence inhomogeneity in ZnO nanorods. Appl Phys Lett 93(24):243104ADSCrossRefGoogle Scholar
  178. 178.
    Kuo CL, Wang RC, Huang JL, Liu CP, Lai YF, Wang CY, Chung HC (2008) ZnO nanorods with two spatially distinct light emissions. Nanotechnology 19(28):285703CrossRefGoogle Scholar
  179. 179.
    Liu WZ, Liang Y, Xu HY, Wang LL, Zhang XT, Liu YC, Hark SK (2010) Heteroepitaxial growth and spatially resolved cathodoluminescence of ZnO/MgZnO coaxial nanorod arrays. J Phys Chem C114(39):16148–16152Google Scholar
  180. 180.
    Schirra M, Reiser A, Prinz GM, Ladenburger A, Thonke K, Sauer R (2007) Cathodoluminescence study of single zinc oxide nanopillars with high spatial and spectral resolution. J Appl Phys 101(11):113509ADSCrossRefGoogle Scholar
  181. 181.
    Yuan XL, Dierre B, Wang JB, Zhang BP, Sekiguchi T (2007) Spatial distribution of impurities in ZnO nanotubes characterized by cathodoluminescence. J Nanosci Nanotechnol 7(9):3323–3327CrossRefGoogle Scholar
  182. 182.
    Biswas M, Kwack HS, Dang LS, Henry MO, McGlynn E (2009) Spatial inhomogeneity of donor bound exciton emission from ZnO nanostructures grown on Si. Nanotechnology 20(25):255703ADSCrossRefGoogle Scholar
  183. 183.
    Chen SL, Lee SK, Chen WM, Dong HX, Sun L, Chen ZH, Buyanova IA (2010) On the origin of suppression of free exciton no-phonon emission in ZnO tetrapods. Appl Phys Lett 96(3):033108ADSCrossRefGoogle Scholar
  184. 184.
    Zollfrank C, Rambo CR, Batentschuk M, Greil P (2007) Spatially resolved luminescence properties of ZnO tetrapods. J Mater Sci 42(15):6325–6330ADSCrossRefGoogle Scholar
  185. 185.
    Kurbanov SS, Cho HD, Kang TW (2011) Effect of excitation and detection angles on photoluminescence spectrum from ZnO nanorod array. Opt Commun 284(1):240–244ADSCrossRefGoogle Scholar
  186. 186.
    Gruzintsev AN, Emelchenko GA, Redkin AN, Volkov WT, Yakimov EE, Visimberga G, Romanov SG (2009) Visualization of localized photon modes of ZnO nanorods by scanning cathodoluminescence. Semiconductors 43(4):468–471ADSCrossRefGoogle Scholar
  187. 187.
    Bae J, Shim EL, Park Y, Kim H, Kim JM, Kang CJ, Choi YJ (2011) Direct observation of enhanced cathodoluminescence emissions from ZnO nanocones compared with ZnO nanowire arrays. Nanotechnology 22(28):285711CrossRefGoogle Scholar
  188. 188.
    Bano N, Hussain I, Nur O, Willander M, Wahab Q, Henry A, Kwack HS, Dang DLS (2010) Depth-resolved cathodoluminescence study of zinc oxide nanorods catalytically grown on p-type 4H-SiC. J Luminescence 130(6):963–968ADSCrossRefGoogle Scholar
  189. 189.
    Fan HJ, Scholz R, Zacharias M, Gösele U, Bertram F, Forster D, Christen J (2005) Local luminescence of ZnO nanowire-covered surface: a cathodoluminescence microscopy study. Appl Phys Lett 86(2):023113ADSCrossRefGoogle Scholar
  190. 190.
    Yang J, Li S, Li ZW, McBean K, Phillips MR (2008) Origin of excitonic emission suppression in an individual ZnO nanobelt. J Phys Chem C 112(27):10095–10099CrossRefGoogle Scholar
  191. 191.
    Xue HZ, Pan N, Li M, Wu YK, Wang XP, Hou JG (2010) Probing the strain effect on near band edge emission of a curved ZnO nanowire via spatially resolved cathodoluminescence. Nanotechnology 21(21):215701ADSCrossRefGoogle Scholar
  192. 192.
    Ng AMC, Xi YY, Hsu YF, Djurišić AB, Chan WK, Gwo S, Tam HL, Cheah KW, Fong PWK, Lui HF, Surya C (2009) GaN/ZnO nanorod light emitting diodes with different emission spectra. Nanotechnology 20(44):445201ADSCrossRefGoogle Scholar
  193. 193.
    Willander M, Nur O, Bano N, Sultana K (2009) Zinc oxide nanorod-based heterostructures on solid and soft substrates for white-light-emitting diode applications. New J Phys 11:125020CrossRefGoogle Scholar
  194. 194.
    Alvi NH, Ul Hasan K, Nur O, Willander M (2011) The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes. Nanoscale Res Lett 6:130ADSCrossRefGoogle Scholar
  195. 195.
    Chen XY, Ng AMC, Fang F, Djurišić AB, Chan WK, Tam HL, Cheah KW, Fong PWK, Lui HF, Surya C (2010) The influence of the ZnO seed layer on the ZnO nanorod/GaN LEDs. J Electrochem Soc 157(3):H308–H311CrossRefGoogle Scholar
  196. 196.
    Ng AMC, Chen XY, Fang F, Hsu YF, Djurišić AB, Ling CC, Tam HL, Cheah KW, Fong PWK, Lui HF, Surya C, Chan WK (2010) Solution-based growth of ZnO nanorods for light-emitting devices: hydrothermal versus electrodeposition. Appl Phys B Lasers Optics 100(4):851–858ADSCrossRefGoogle Scholar
  197. 197.
    Chen XY, Ng AMC, Fang F, Ng YH, Djurišić AB, Tam HL, Cheah KW, Gwo S, Chan WK, Lui HF, Fong PWK, Surya C (2011) ZnO nanorod/GaN light-emitting diodes: the origin of yellow and violet emission bands under reverse and forward bias. J Appl Phys 110(9):094513ADSCrossRefGoogle Scholar
  198. 198.
    Zimmler MA, Voss T, Ronning C, Capasso F (2009) Exciton-related electroluminescence from ZnO nanowire light-emitting diodes. Appl Phys Lett 94(24):241120ADSCrossRefGoogle Scholar
  199. 199.
    Zhang XM, Lu MY, Zhang Y, Chen LJ, Wang ZL (2009) Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv Mater 21(27):2767–2770CrossRefGoogle Scholar
  200. 200.
    Lupan O, Pauporté T, Viana B (2010) Low-Voltage UV-Electroluminescence from ZnO-nanowire array/p-GaN light-emitting diodes. Adv Mater 22(30):3298–3302CrossRefGoogle Scholar
  201. 201.
    Alvi NH, Riaz M, Tzamalis G, Nur O, Willander M (2010) Fabrication and characterization of high-brightness light emitting diodes based on n-ZnO nanorods grown by a low-temperature chemical method on p-4H-SiC and p-GaN. Semicond Sci Technol 25(6):065004ADSCrossRefGoogle Scholar
  202. 202.
    Dai J, Xu CX, Sun XW (2011) ZnO-microrod/p-GaN heterostructured whispering-gallery-mode microlaser diodes. Adv Mater 23(35):4115–4119CrossRefGoogle Scholar
  203. 203.
    Liu CY, Xu HY, Ma JG, Li XH, Zhang XT, Liu YC, Mu R (2011) Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires. Appl Phys Lett 99(6):063115CrossRefGoogle Scholar
  204. 204.
    Chu S, Wang GP, Zhou WH, Lin YQ, Chernyak L, Zhao JZ, Kong JY, Li L, Ren JJ, Liu JL (2011) Electrically pumped waveguide lasing from ZnO nanowires. Nat Nanotechnol 6(8):506–510ADSCrossRefGoogle Scholar
  205. 205.
    Zhu H, Shan CX, Li BH, Zhang ZZ, Shen DZ, Choy KL (2011) Low-threshold electrically pumped ultraviolet laser diode. J Mater Chem 21(9):2848–2851CrossRefGoogle Scholar
  206. 206.
    Liang HK, Yu SF, Yang HY (2010) ZnO random laser diode arrays for stable single-mode operation at high power. Appl Phys Lett 97(24):241107ADSCrossRefGoogle Scholar
  207. 207.
    Guo Z, Zhao DX, Liu YC, Shen DZ, Yao B, Zhang ZZ, Li BH, Guo Z, Liu YC (2010) Electrically pumped single-mode lasing emission of self-assembled n-ZnO microcrystalline film/p-GaN heterojunction diode. J Phys Chem C 114(36):15499–15503CrossRefGoogle Scholar
  208. 208.
    Chen PL, Ma XY, Li DS, Zhang YY, Yang DR (2009) Electrically pumped ultraviolet random lasing from ZnO-based metal-insulator-semiconductor devices: dependence on carrier transport. Opt Expr 17(6):4712–4717ADSCrossRefGoogle Scholar
  209. 209.
    Zhu H, Shan CX, Zhang JY, Zhang ZZ, Li BH, Zhao DX, Yao B, Shen DZ, Fan XW, Tang ZK, Hou XH, Choy KL (2010) Low-threshold electrically pumped random lasers. Adv Mater 22(16):1877–1881CrossRefGoogle Scholar
  210. 210.
    Chu S, Olmedo M, Yang Z, Kong JY, Liu JL (2008) Electrically pumped ultraviolet ZnO diode lasers on Si. Appl Phys Lett 93(18):181106ADSCrossRefGoogle Scholar
  211. 211.
    Zhu H, Shan CX, Yao B, Li BH, Zhang JY, Zhang ZZ, Zhao DX, Shen DZ, Fan XW, Lu YM, Tong ZK (2009) Ultralow-threshold laser realized in zinc oxide. Adv Mater 21(16):1613–1617CrossRefGoogle Scholar
  212. 212.
    Ma XY, Pan JW, Chen PL, Li DS, Zhang H, Yang Y, Yang DR (2009) Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si. Opt Expr 17(16):14426–14433ADSCrossRefGoogle Scholar
  213. 213.
    Li YP, Ma XY, Xu MS, Xiang LL, Yang DR (2011) Remarkable decrease in threshold for electrically pumped random ultraviolet lasing from ZnO film by incorporation of Zn2TiO4 nanoparticles. Opt Expr 19(9):8662–8669ADSCrossRefGoogle Scholar
  214. 214.
    Samuel IDW, Namdas EB, Turnbull GA (2009) How to recognize lasing. Nat Photonics 3(10):546–549ADSCrossRefGoogle Scholar
  215. 215.
    Rosenberg RA, Abu Haija M, Vijayalakshmi K, Zhou J, Xu S, Wang ZL (2009) Depth resolved luminescence from oriented ZnO nanowires. Appl Phys Lett 95(24):243101ADSCrossRefGoogle Scholar
  216. 216.
    Rosenberg RA, Shenoy GK, Tien LC, Norton D, Pearton S, Sun XH, Sham TK (2006) Anisotropic x-ray absorption effects in the optical luminescence yield of ZnO nanostructures. Appl Phys Lett 89(9):093118ADSCrossRefGoogle Scholar
  217. 217.
    Yatsui T, Ohtsu M, Yoo J, An SJ, Yi GC (2005) Near-field measurement of spectral anisotropy and optical absorption of isolated ZnO nanorod single-quantum-well structures. Appl Phys Lett 87(3):033101ADSCrossRefGoogle Scholar
  218. 218.
    Wu YL, Tok AIY, Boey FYC, Zeng XT, Zhang XH (2007) Surface modification of ZnO nanocrystals. Appl Surf Sci 253(12):5473–5479ADSCrossRefGoogle Scholar
  219. 219.
    Lavrov EV (2009) Hydrogen in ZnO. Physica B-Condensed Matter 404(23–24):5075–5079ADSCrossRefGoogle Scholar
  220. 220.
    Lavrov EV, Herklotz F, Weber J (2009) Identification of two hydrogen donors in ZnO. Phys Rev B 79(16):165210ADSCrossRefGoogle Scholar
  221. 221.
    Lavrov EV (2010) Hydrogen in ZnO. Proceedings of SPIE 7603:76030JADSCrossRefGoogle Scholar
  222. 222.
    Wang XF, Xu JB, Yu XJ, Xue K, Yu JG, Zhao XJ (2007) Structural evidence of secondary phase segregation from the Raman vibrational modes in Zn1−xCoxO (0 < x < 0.6). Appl Phys Lett 91(3): 031908Google Scholar
  223. 223.
    Li TH, Liu LZ, Li XX, Wu XL, Chen HT, Chu PK (2011) Oxygen vacancy density-dependent transformation from infrared to Raman active vibration mode in SnO2 nanostructures. Opt Lett 36(21):4296–4298ADSCrossRefGoogle Scholar
  224. 224.
    Bergman L, Morrison JL, Chen XB, Huso J, Hoeck H (2006) Ultraviolet photoluminescence and Raman properties of MgZnO nanopowders. Appl Phys Lett 88(2):023103ADSCrossRefGoogle Scholar
  225. 225.
    Ye JD, Teoh KW, Sun XW, Lo GQ, Kwong L, Zhao H, Gu SL, Zhang R, Zheng YD, Oh SA, Zhang XH, Tripathy S (2007) Effects of alloying and localized electronic states on the resonant Raman spectra of Zn1−xMgxO nanocrystals. Appl Phys Lett 91(9):091901ADSCrossRefGoogle Scholar
  226. 226.
    Lu JG, Zhang YZ, Ye ZZ, Zeng YJ, Huang JY, Wang L (2007) Rational synthesis and tunable optical properties of quasialigned Zn1−xMgxO nanorods. Appl Phys Lett 91(19):193108ADSCrossRefGoogle Scholar
  227. 227.
    Alim KA, Fonoberov VA, Shamsa M, Balandin AA (2005) Micro-Raman investigation of optical phonons in ZnO nanocrystals. J Appl Phys 97(12):124313ADSCrossRefGoogle Scholar
  228. 228.
    Šćepanović M, Grujić-Brojĉin M, Vojisavljević K, Srećković T (2011) Defect induced variation in vibrational and optoelectronic properties of nanocrystalline ZnO powders. J Appl Phys 109(3):034313CrossRefGoogle Scholar
  229. 229.
    Kukreja LM, Misra P, Das AK, Sartor J, Kalt H (2011) Anomalous optical processes in photoluminescence from ultrasmall quantum dots of ZnO. J Vac Sci Technol A 29(3):03A120CrossRefGoogle Scholar
  230. 230.
    Zhou JX, Zhang MS, Hong JM, Yin Z (2006) Raman spectroscopic and photoluminescence study of single-crystalline SnO2 nanowires. Solid State Commun 138(5):242–246ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. B. Djurišić
    • 1
  • X. Y. Chen
    • 1
  • J. A. Zapien
    • 2
  • Y. H. Leung
    • 1
  • A. M. C. Ng
    • 1
    • 3
  1. 1.Department of PhysicsThe University of Hong KongPokfulam RoadHong Kong
  2. 2.Department of Physics and Materials ScienceCity University of Hong KongKowloonHong Kong
  3. 3.Nanostructure Institute for Energy and Environmental Research, Division of Physical SciencesSouth University of Science and Technology of ChinaShenzhenChina

Personalised recommendations