Skip to main content

Geometrically Tunable Optical Properties of Metal Nanoparticles

  • Chapter
  • First Online:
Book cover UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization

Abstract

Noble metal nanoparticles exhibit fascinating geometrically tunable optical properties that are dominated by their localized surface plasmon resonances (LSPRs). By judiciously tailoring the geometric parameters of a metal nanoparticle, one can fine-tune the nanoparticle’s optical responses in a precisely controllable manner and thereby selectively implement desired optical properties into nanomaterial systems or nanodevices for specific applications. In this chapter, we present a review on the recent experimental and theoretical advances in the understanding of the geometry–optical property relationship of metallic nanoparticles in various geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102

    Article  Google Scholar 

  2. Mie G (1908) Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Annalen Der Physik 25(3):377–445

    Article  ADS  MATH  Google Scholar 

  3. Faraday M (1857) The bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans Roy Soc Lond 147:145–181

    Article  Google Scholar 

  4. Link S, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54:331–366

    Article  ADS  Google Scholar 

  5. Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19(3):409–453

    Article  Google Scholar 

  6. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34(4):257–264

    Article  MathSciNet  Google Scholar 

  7. Xia YN, Halas NJ (2005) Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. Mrs Bull 30(5):338–344

    Article  Google Scholar 

  8. Jain PK, Huang XH, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586

    Article  Google Scholar 

  9. Loo C, Lowery A, Halas NJ, West J et al (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711

    Article  ADS  Google Scholar 

  10. Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120

    Article  Google Scholar 

  11. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103(40):8410–8426

    Article  Google Scholar 

  12. Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 15(5):414–416

    Article  Google Scholar 

  13. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method. Chem Mater 15(10):1957–1962

    Article  Google Scholar 

  14. Murphy CJ, Jana NR (2002) Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 14(1):80–82

    Article  Google Scholar 

  15. Murphy CJ, Sau TK, Gole A, Orendorff CJ (2005) Surfactant-directed synthesis and optical properties of one-dimensional plasmonic metallic nanostructures. Mrs Bull 30(5):349–355

    Article  Google Scholar 

  16. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun 7:617–618

    Article  Google Scholar 

  17. Jin RC, Cao YW, Mirkin CA, Kelly KL et al (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294(5548):1901–1903

    Article  ADS  Google Scholar 

  18. Millstone JE, Park S, Shuford KL, Qin LD et al (2005) Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J Am Chem Soc 127(15):5312–5313

    Article  Google Scholar 

  19. Pastoriza-Santos I, Liz-Marzan LM (2002) Synthesis of silver nanoprisms in dmf. Nano Lett 2(8):903–905

    Article  ADS  Google Scholar 

  20. Sun YG, Xia YN (2003) Triangular nanoplates of silver: synthesis, characterization, and use as sacrificial templates for generating triangular nanorings of gold. Adv Mater 15(9):695–699

    Article  Google Scholar 

  21. Chen SH, Carroll DL (2002) Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett 2(9):1003–1007

    Article  ADS  Google Scholar 

  22. Averitt RD, Sarkar D, Halas NJ (1997) Plasmon resonance shifts of au-coated au2s nanoshells: insight into multicomponent nanoparticle growth. Phys Rev Lett 78(22):4217–4220

    Article  ADS  Google Scholar 

  23. Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288(2–4):243–247

    Article  ADS  Google Scholar 

  24. Halas NJ (2005) Playing with plasmons. Tuning the optical resonant properties of metallic nanoshells. Mrs Bull 30(5):362–367

    Article  Google Scholar 

  25. Hao E, Bailey RC, Schatz GC, Hupp JT et al (2004) Synthesis and optical properties of "branched" gold nanocrystals. Nano Lett 4(2):327–330

    Article  ADS  Google Scholar 

  26. Nehl CL, Liao HW, Hafner JH (2006) Optical properties of star-shaped gold nanoparticles. Nano Lett 6(4):683–688

    Article  ADS  Google Scholar 

  27. Chen JY, Wiley B, Li ZY, Campbell D et al (2005) Gold nanocages: engineering their structure for biomedical applications. Adv Mater 17(18):2255–2261

    Article  Google Scholar 

  28. Chen JY, McLellan JM, Siekkinen A, Xiong YJ et al (2006) Facile synthesis of gold-silver nanocages with controllable pores on the surface. J Am Chem Soc 128(46):14776–14777

    Article  Google Scholar 

  29. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  30. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New York

    Book  Google Scholar 

  31. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3):788–800

    Article  Google Scholar 

  32. Raether H (1988) Surface plasmon on smooth and rough surfaces and on gratings. Springer, Berlin

    Google Scholar 

  33. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  ADS  Google Scholar 

  34. Kuwata H, Tamaru H, Esumi K, Miyano K (2003) Resonant light scattering from metal nanoparticles: practical analysis beyond rayleigh approximation. Appl Phys Lett 83(22):4625–4627

    Article  ADS  Google Scholar 

  35. Gan QQ, Song GF, Yang GH, Xu Y et al (2006) Near-field scanning optical microscopy with an active probe. Appl Phys Lett 88(12):121111

    Article  ADS  Google Scholar 

  36. Mitsui T (2005) Development of a polarization-preserving optical-fiber probe for near-field scanning optical microscopy and the influences of bending and squeezing on the polarization properties. Rev Sci Instrum 76(4):043703

    Article  ADS  Google Scholar 

  37. Betzig E, Chichester RJ (1993) Single molecules observed by near-field scanning optical microscopy. Science 262(5138):1422–1425

    Article  ADS  Google Scholar 

  38. Betzig E, Trautman JK, Harris TD, Weiner JS et al (1991) Breaking the diffraction barrier–optical microscopy on a nanometric scale. Science 251(5000):1468–1470

    Article  ADS  Google Scholar 

  39. Bethe HA (1944) Theory of diffraction by small holes. Phys Rev 66(7–8):163–182

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. de Abajo F (2002) Light transmission through a single cylindrical hole in a metallic film. Opt Express 10(25):1475–1484

    Article  ADS  Google Scholar 

  41. Ozcan A, Cubukcu E, Bilenca A, Crozier KB et al (2006) Differential near-field scanning optical microscopy. Nano Lett 6(11):2609–2616

    Article  ADS  Google Scholar 

  42. Egerton RF (1996) Electron energy-loss spectroscopy in the electron microscope second edition. Plenum, New York

    Book  Google Scholar 

  43. Raether H (1980) Excitation of plasmons and interband transitions by electrons, vol 88. Springer, Berlin

    Google Scholar 

  44. Koh AL, Fernandez-Dominguez AI, McComb DW, Maier SA et al (2011) High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. Nano Lett 11(3):1323–1330

    Article  ADS  Google Scholar 

  45. Schaffer B, Grogger W, Kothleitner G, Hofer F (2010) Comparison of eftem and stem eels plasmon imaging of gold nanoparticles in a monochromated tem. Ultramicroscopy 110(8):1087–1093

    Article  Google Scholar 

  46. Garcia de Abajo FJ (2010) Optical excitations in electron microscopy. Rev Mod Phys 82(1):209–275

    Article  ADS  Google Scholar 

  47. Chu M-W, Myroshnychenko V, Chen CH, Deng J-P et al (2009) Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam. Nano Lett 9(1):399–404

    Article  ADS  Google Scholar 

  48. Nelayah J, Kociak M, Stephan O, Garcia de Abajo FJ et al (2007) Mapping surface plasmons on a single metallic nanoparticle. Nat Phys 3(5):348–353

    Article  Google Scholar 

  49. N′Gom M, Li S, Schatz G, Erni R et al (2009) Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods. Phys Rev B 80(11):113411

    Article  ADS  Google Scholar 

  50. Guiton BS, Iberi V, Li SZ, Leonard DN, Parish CM, Kotula PG, Varela M, Schatz GC, Pennycook SJ, Camden JP (2011) Correlated optical measurements and plasmon mapping of silver nanorods. Nano Lett 11(8):3482–3488

    Article  Google Scholar 

  51. Campion A, Kambhampati P (1998) Surface-enhanced raman scattering. Chem Soc Rev 27(4):241–250

    Article  Google Scholar 

  52. Kneipp K, Kneipp H, Itzkan I, Dasari RR et al (1999) Ultrasensitive chemical analysis by raman spectroscopy. Chem Rev 99(10):2957–2976

    Article  Google Scholar 

  53. Schatz GC (1984) Theoretical-studies of surface enhanced raman-scattering. Acc Chem Res 17(10):370–376

    Article  Google Scholar 

  54. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57(3):783–826

    Article  ADS  Google Scholar 

  55. Lal S, Grady NK, Goodrich GP, Halas NJ (2006) Profiling the near field of a plasmonic nanoparticle with raman-based molecular rulers. Nano Lett 6(10):2338–2343

    Article  ADS  Google Scholar 

  56. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    Article  Google Scholar 

  57. Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111(10):3806–3819

    Article  Google Scholar 

  58. Riikonen S, Romero I, Garcia de Abajo FJ (2005) Plasmon tunability in metallodielectric metamaterials. Phys Rev B 71(23):235104

    Article  ADS  Google Scholar 

  59. Gonzalez AL, Noguez C (2007) Influence of morphology on the optical properties of metal nanoparticles. J Comput Theoret Nanosci 4(2):231–238

    Google Scholar 

  60. Yee KS (1966) Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. IEEE Trans Antenn Propag AP14(3):302–307

    ADS  Google Scholar 

  61. Jensen LL, Jensen L (2009) Atomistic electrodynamics model for optical properties of silver nanoclusters. J Phys Chem C 113(34):15182–15190

    Article  Google Scholar 

  62. Morton SM, Jensen L (2009) Understanding the molecule-surface chemical coupling in sers. J Am Chem Soc 131(11):4090–4098

    Article  Google Scholar 

  63. Zangwill A, Soven P (1980) Density-functional approach to local-field effects in finite systems – photoabsorption in the rare-gases. Phys Rev A 21(5):1561–1572

    Article  ADS  Google Scholar 

  64. Rodriguez-Fernandez J, Perez-Juste J, Garcia de Abajo FJ, Liz-Marzan LM (2006) Seeded growth of submicron au colloids with quadrupole plasmon resonance modes. Langmuir 22(16):7007–7010

    Article  Google Scholar 

  65. Malynych S, Chumanov G (2007) Extinction spectra of quasi-spherical silver sub-micron particles. J Quan Spectros Radiat Trans 106(1–3):297–303

    Article  ADS  Google Scholar 

  66. Luther JM, Jain PK, Ewers T, Alivisatos AP (2011) Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat Mater 10(5):361–366

    Article  ADS  Google Scholar 

  67. Wang C, Yin H, Chan R, Peng S et al (2009) One-pot synthesis of oleylamine coated auag alloy nps and their catalysis for co oxidation. Chem Mater 21(3):433–435

    Article  Google Scholar 

  68. Mulvaney P, Giersig M, Henglein A (1993) Electrochemistry of multilayer colloids - preparation and absorption-spectrum of gold-coated silver particles. J Phys Chem 97(27):7061–7064

    Article  Google Scholar 

  69. Hostetler MJ, Zhong CJ, Yen BKH, Anderegg J et al (1998) Stable, monolayer-protected metal alloy clusters. J Am Chem Soc 120(36):9396–9397

    Article  Google Scholar 

  70. Link S, Wang ZL, El-Sayed MA (1999) Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B 103(18):3529–3533

    Article  Google Scholar 

  71. Mallin MP, Murphy CJ (2002) Solution-phase synthesis of sub-10 nm au-ag alloy nanoparticles. Nano Lett 2(11):1235–1237

    Article  ADS  Google Scholar 

  72. Shibata T, Bunker BA, Zhang ZY, Meisel D et al (2002) Size-dependent spontaneous alloying of Au-Ag nanoparticles. J Am Chem Soc 124(40):11989–11996

    Article  Google Scholar 

  73. Wilson OM, Scott RWJ, Garcia-Martinez JC, Crooks RM (2005) Synthesis, characterization, and structure-selective extraction of 1-3-nm diameter auag dendrimer-encapsulated bimetallic nanoparticles. J Am Chem Soc 127(3):1015–1024

    Article  Google Scholar 

  74. Wilcoxon J (2009) Optical absorption properties of dispersed gold and silver alloy nanoparticles. J Phys Chem B 113(9):2647–2656

    Article  Google Scholar 

  75. Hodak JH, Henglein A, Giersig M, Hartland GV (2000) Laser-induced inter-diffusion in auag core-shell nanoparticles. J Phys Chem B 104(49):11708–11718

    Article  Google Scholar 

  76. Mallik K, Mandal M, Pradhan N, Pal T (2001) Seed mediated formation of bimetallic nanoparticles by uv irradiation: a photochemical approach for the preparation of "core-shell" type structures. Nano Lett 1(6):319–322

    Article  ADS  Google Scholar 

  77. Wilcoxon JP, Provencio PP (2004) Heterogeneous growth of metal clusters from solutions of seed nanoparticles. J Am Chem Soc 126(20):6402–6408

    Article  Google Scholar 

  78. Zhang J, Tang Y, Weng L, Ouyang M (2009) Versatile strategy for precisely tailored core@shell nanostructures with single shell layer accuracy: the case of metallic shell. Nano Lett 9(12):4061–4065

    Article  ADS  Google Scholar 

  79. Wang C, Peng S, Chan R, Sun S (2009) Synthesis of auag alloy nanoparticles from core/shell-structured ag/au. Small 5(5):567–570

    Article  Google Scholar 

  80. Liz-Marzan LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22(1):32–41

    Article  Google Scholar 

  81. Rivas L, Sanchez-Cortes S, Garcia-Ramos JV, Morcillo G (2000) Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced raman activity. Langmuir 16(25):9722–9728

    Article  Google Scholar 

  82. Srnova-Sloufova I, Lednicky F, Gemperle A, Gemperlova J (2000) Core-shell (ag)au bimetallic nanoparticles: analysis of transmission electron microscopy images. Langmuir 16(25):9928–9935

    Article  Google Scholar 

  83. Rodriguez-Gonzalez B, Burrows A, Watanabe M, Kiely CJ et al (2005) Multishell bimetallic auag nanoparticles: synthesis, structure and optical properties. J Mater Chem 15(17):1755–1759

    Article  Google Scholar 

  84. Shore MS, Wang J, Johnston-Peck AC, Oldenburg AL et al (2011) Synthesis of au(core)/ag(shell) nanoparticles and their conversion to auag alloy nanoparticles. Small 7(2):230–234

    Article  Google Scholar 

  85. Huang XH, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21(48):4880–4910

    Article  Google Scholar 

  86. Murphy CJ, San TK, Gole AM, Orendorff CJ et al (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109(29):13857–13870

    Article  Google Scholar 

  87. Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249(17–18):1870–1901

    Article  Google Scholar 

  88. Gans R (1912) The shape of ultra microscopic gold particles. Annalen Der Physik 37(5):881–900

    Article  ADS  MATH  Google Scholar 

  89. Yu YY, Chang SS, Lee CL, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101(34):6661–6664

    Article  Google Scholar 

  90. Zuloaga J, Prodan E, Nordlander P (2010) Quantum plasmonics: optical properties and tunability of metallic nanorods. ACS Nano 4(9):5269–5276

    Article  Google Scholar 

  91. Murphy CJ, Gole AM, Hunyadi SE, Orendorff CJ (2006) One-dimensional colloidal gold and silver nanostructures. Inorg Chem 45(19):7544–7554

    Article  Google Scholar 

  92. Caswell KK, Bender CM, Murphy CJ (2003) Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett 3(5):667–669

    Article  ADS  Google Scholar 

  93. Wiley BJ, Chen Y, McLellan JM, Xiong Y et al (2007) Synthesis and optical properties of silver nanobars and nanorice. Nano Lett 7(4):1032–1036

    Article  ADS  Google Scholar 

  94. Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8(8):1739–1746

    Article  Google Scholar 

  95. Mieszawska AJ, Jalilian R, Sumanasekera GU, Zamborini FP (2007) The synthesis and fabrication of one-dimensional nanoscale heterojunctions. Small 3(5):722–756

    Article  Google Scholar 

  96. Chang SS, Shih CW, Chen CD, Lai WC et al (1999) The shape transition of gold nanorods. Langmuir 15(3):701–709

    Article  Google Scholar 

  97. Murphy CJ, Thompson LB, Chernak DJ, Yang JA et al (2011) Gold nanorod crystal growth: from seed-mediated synthesis to nanoscale sculpting. Curr Opin Colloid Interf Sci 16(2):128–134

    Article  Google Scholar 

  98. Wiesner J, Wokaun A (1989) Anisometric gold colloids - preparation, characterization, and optical-properties. Chem Phys Lett 157(6):569–575

    Article  ADS  Google Scholar 

  99. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105(19):4065–4067

    Article  Google Scholar 

  100. Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13(18):1389–1393

    Article  Google Scholar 

  101. Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37(9):1783–1791

    Article  Google Scholar 

  102. Wu HY, Chu HC, Kuo TJ, Kuo CL et al (2005) Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid. Chem Mater 17(25):6447–6451

    Article  Google Scholar 

  103. Chen HM, Peng HC, Liu RS, Asakura K et al (2005) Controlling the length and shape of gold nanorods. J Phys Chem B 109(42):19553–19555

    Article  Google Scholar 

  104. Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126(28):8648–8649

    Article  Google Scholar 

  105. Smith DK, Korgel BA (2008) The importance of the ctab surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir 24(3):644–649

    Article  Google Scholar 

  106. Smith DK, Miller NR, Korgel BA (2009) Iodide in ctab prevents gold nanorod formation. Langmuir 25(16):9518–9524

    Article  Google Scholar 

  107. Kim F, Song JH, Yang PD (2002) Photochemical synthesis of gold nanorods. J Am Chem Soc 124(48):14316–14317

    Article  Google Scholar 

  108. Giannici F, Placido T, Curri ML, Striccoli M et al (2009) The fate of silver ions in the photochemical synthesis of gold nanorods: an extended x-ray absorption fine structure analysis. Dalton Trans 46:10367–10374

    Article  Google Scholar 

  109. Placido T, Comparelli R, Giannici F, Cozzoli PD et al (2009) Photochemical synthesis of water-soluble gold nanorods: the role of silver in assisting anisotropic growth. Chem Mater 21(18):4192–4202

    Article  Google Scholar 

  110. Niidome Y, Nishioka K, Kawasaki H, Yamada S (2003) Rapid synthesis of gold nanorods by the combination of chemical reduction and photoirradiation processes; morphological changes depending on the growing processes. Chem Commun 18:2376–2377

    Article  Google Scholar 

  111. Miranda OR, Ahmadi TS (2005) Effects of intensity and energy of cw uv light on the growth of gold nanorods. J Phys Chem B 109(33):15724–15734

    Article  Google Scholar 

  112. Ahmed M, Narain R (2010) Rapid synthesis of gold nanorods using a one-step photochemical strategy. Langmuir 26(23):18392–18399

    Article  Google Scholar 

  113. Nishioka K, Niidome Y, Yamada S (2007) Photochemical reactions of ketones to synthesize gold nanorods. Langmuir 23(20):10353–10356

    Article  Google Scholar 

  114. Billot L, de la Chapelle ML, Grimault AS, Vial A et al (2006) Surface enhanced raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement. Chem Phys Lett 422(4–6):303–307

    Article  ADS  Google Scholar 

  115. Dayal PB, Koyama F (2007) Polarization control of 0.85 mu m vertical-cavity surface-emitting lasers integrated with gold nanorod arrays. Appl Phys Lett 91(11):111–107

    Google Scholar 

  116. Hu M, Novo C, Funston A, Wang H et al (2008) Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance. J Mater Chem 18(17):1949–1960

    Article  Google Scholar 

  117. Sonnichsen C, Franzl T, Wilk T, von Plessen G et al (2002) Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 88(7):077402

    Article  ADS  Google Scholar 

  118. Novo C, Gomez D, Perez-Juste J, Zhang Z et al (2006) Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. Phys Chem Chem Phys 8(30):3540–3546

    Article  Google Scholar 

  119. Mooradia A (1969) Photoluminescence of metals. Phys Rev Lett 22(5):185–187

    Article  ADS  Google Scholar 

  120. Boyd GT, Yu ZH, Shen YR (1986) Photoinduced luminescence from the noble-metals and its enhancement on roughened surfaces. Phys Rev B 33(12):7923–7936

    Article  ADS  Google Scholar 

  121. Mohamed MB, Volkov V, Link S, El-Sayed MA (2000) The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem Phys Lett 317(6):517–523

    Article  ADS  Google Scholar 

  122. Eustis S, El-Sayed M (2005) Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study. J Phys Chem B 109(34):16350–16356

    Article  Google Scholar 

  123. Bouhelier A, Bachelot R, Lerondel G, Kostcheev S et al (2005) Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. Phys Rev Lett 95(26):267405

    Article  ADS  Google Scholar 

  124. Imura K, Nagahara T, Okamoto H (2004) Plasmon mode imaging of single gold nanorods. J Am Chem Soc 126(40):12730–12731

    Article  Google Scholar 

  125. Imura K, Nagahara T, Okamoto H (2005) Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes. J Phys Chem B 109(27):13214–13220

    Article  Google Scholar 

  126. Imura K, Nagahara T, Okamoto H (2005) Near-field optical imaging of plasmon modes in gold nanorods. J Chem Phys 122(15):154701

    Article  ADS  Google Scholar 

  127. Wang HF, Huff TB, Zweifel DA, He W et al (2005) In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci USA 102(44):15752–15756

    Article  ADS  Google Scholar 

  128. Durr NJ, Larson T, Smith DK, Korgel BA et al (2007) Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 7(4):941–945

    Article  ADS  Google Scholar 

  129. Sershen SR, Westcott SL, Halas NJ, West JL (2000) Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res 51(3):293–298

    Article  Google Scholar 

  130. Hirsch LR, Jackson JB, Lee A, Halas NJ et al (2003) A whole blood immunoassay using gold nanoshells. Anal Chem 75(10):2377–2381

    Article  Google Scholar 

  131. Jackson JB, Westcott SL, Hirsch LR, West JL et al (2003) Controlling the surface enhanced raman effect via the nanoshell geometry. Appl Phys Lett 82(2):257–259

    Article  ADS  Google Scholar 

  132. Jackson JB, Halas NJ (2004) Surface-enhanced raman scattering on tunable plasmonic nanoparticle substrates. Proc Natl Acad Sci USA 101(52):17930–17935

    Article  ADS  Google Scholar 

  133. Tam F, Goodrich GP, Johnson BR, Halas NJ (2007) Plasmonic enhancement of molecular fluorescence. Nano Lett 7(2):496–501

    Article  ADS  Google Scholar 

  134. Kundu J, Le F, Nordlander P, Halas NJ (2008) Surface enhanced infrared absorption (seira) spectroscopy on nanoshell aggregate substrates. Chem Phys Lett 452(1–3):115–119

    Article  ADS  Google Scholar 

  135. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100(23):13549–13554

    Article  ADS  Google Scholar 

  136. Loo C, Lin A, Hirsch L, Lee MH et al (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3(1):33–40

    ADS  Google Scholar 

  137. Aden AL, Kerker M (1951) Scattering of electromagnetic waves from 2 concentric spheres. J Appl Phys 22(10):1242–1246

    Article  MathSciNet  ADS  MATH  Google Scholar 

  138. Neeves AE, Birnboim MH (1989) Composite structures for the enhancement of nonlinear-optical susceptibility. J Opt Soc Am B Opt Phys 6(4):787–796

    Article  ADS  Google Scholar 

  139. Zhou HS, Honma I, Komiyama H, Haus JW (1994) Controlled synthesis and quantum-size effect in gold-coated nanoparticles. Phys Rev B 50(16):12052–12056

    Article  ADS  Google Scholar 

  140. Stober W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in micron size range. J Colloid Interf Sci 26(1):62–69

    Article  Google Scholar 

  141. Shi WL, Sahoo Y, Swihart MT, Prasad PN (2005) Gold nanoshells on polystyrene cores for control of surface plasmon resonance. Langmuir 21(4):1610–1617

    Article  Google Scholar 

  142. Bardhan R, Grady NK, Ali T, Halas NJ (2010) Metallic nanoshells with semiconductor cores: optical characteristics modified by core medium properties. ACS Nano 4(10):6169–6179

    Article  Google Scholar 

  143. Brinson BE, Lassiter JB, Levin CS, Bardhan R et al (2008) Nanoshells made easy: improving au layer growth on nanoparticle surfaces. Langmuir 24(24):14166–14171

    Article  Google Scholar 

  144. Jackson JB, Halas NJ (2001) Silver nanoshells: variations in morphologies and optical properties. J Phys Chem B 105(14):2743–2746

    Article  Google Scholar 

  145. Jiang ZJ, Liu CY (2003) Seed-mediated growth technique for the preparation of a silver nanoshell on a silica sphere. J Phys Chem B 107(45):12411–12415

    Article  Google Scholar 

  146. Wang H, Tam F, Grady NK, Halas NJ (2005) Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance. J Phys Chem B 109(39):18218–18222

    Article  Google Scholar 

  147. Liu JB, Dong W, Zhan P, Wang SZ et al (2005) Synthesis of bimetallic nanoshells by an improved electroless plating method. Langmuir 21(5):1683–1686

    Article  Google Scholar 

  148. Oldenburg SJ, Jackson JB, Westcott SL, Halas NJ (1999) Infrared extinction properties of gold nanoshells. Appl Phys Lett 75(19):2897–2899

    Article  ADS  Google Scholar 

  149. Tam F, Moran C, Halas NJ (2004) Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment. J Phys Chem B 108(45):17290–17294

    Article  Google Scholar 

  150. Nehl CL, Grady NK, Goodrich GP, Tam F et al (2004) Scattering spectra of single gold nanoshells. Nano Lett 4(12):2355–2359

    Article  ADS  Google Scholar 

  151. Tam F, Chen AL, Kundu J, Wang H et al (2007) Mesoscopic nanoshells: geometry-dependent plasmon resonances beyond the quasistatic limit. J Chem Phys 127(20):204703

    Article  ADS  Google Scholar 

  152. Brandl DW, Nordlander P (2007) Plasmon modes of curvilinear metallic core/shell particles. J Chem Phys 126(14):144708

    Article  ADS  Google Scholar 

  153. Wang H, Fu K, Drezek RA, Halas NJ (2006) Light scattering from spherical plasmonic nanoantennas: effects of nanoscale roughness. Appl Phys B Lasers Optics 84(1–2):191–195

    Article  ADS  Google Scholar 

  154. Wang H, Goodrich GP, Tam F, Oubre C et al (2005) Controlled texturing modifies the surface topography and plasmonic properties of au nanoshells. J Phys Chem B 109(22):11083–11087

    Article  Google Scholar 

  155. Oubre C, Nordlander P (2004) Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method. J Phys Chem B 108(46):17740–17747

    Article  Google Scholar 

  156. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422

    Article  ADS  Google Scholar 

  157. Prodan E, Nordlander P (2004) Plasmon hybridization in spherical nanoparticles. J Chem Phys 120(11):5444–5454

    Article  ADS  Google Scholar 

  158. Nordlander P, Oubre C, Prodan E, Li K et al (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4(5):899–903

    Article  ADS  Google Scholar 

  159. Wang H, Brandl DW, Nordlander P, Halas NJ (2007) Plasmonic nanostructures: artificial molecules. Acc Chem Res 40(1):53–62

    Article  Google Scholar 

  160. Prodan E, Nordlander P (2003) Structural tunability of the plasmon resonances in metallic nanoshells. Nano Lett 3(4):543–547

    Article  ADS  Google Scholar 

  161. Radloff C, Halas NJ (2004) Plasmonic properties of concentric nanoshells. Nano Lett 4(7):1323–1327

    Article  ADS  Google Scholar 

  162. Bardhan R, Mukherjee S, Mirin NA, Levit SD et al (2010) Nanosphere-in-a-nanoshell: a simple nanomatryushka. J Phys Chem C 114(16):7378–7383

    Article  Google Scholar 

  163. Wang H, Wu YP, Lassiter B, Nehl CL et al (2006) Symmetry breaking in individual plasmonic nanoparticles. Proc Natl Acad Sci USA 103(29):10856–10860

    Article  ADS  Google Scholar 

  164. Wu Y, Nordlander P (2006) Plasmon hybridization in nanoshells with a nonconcentric core. J Chem Phys 125(12):124708

    Article  ADS  Google Scholar 

  165. Shvets G, Urzhumov YA (2004) Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances. Phys Rev Lett 93(24):243902

    Article  ADS  Google Scholar 

  166. Brandl DW, Oubre C, Nordlander P (2005) Plasmon hybridization in nanoshell dimers. J Chem Phys 123(2):024701

    Article  ADS  Google Scholar 

  167. Love JC, Gates BD, Wolfe DB, Paul KE et al (2002) Fabrication and wetting properties of metallic half-shells with submicron diameters. Nano Lett 2(8):891–894

    Article  ADS  Google Scholar 

  168. Liu J, McBean KE, Harris N, Cortie MB (2007) Optical properties of suspensions of gold half-shells. Mater Sci Engin B-Solid State Mater Advan Technol 140(3):195–198

    Article  Google Scholar 

  169. Charnay C, Lee A, Man SQ, Moran CE et al (2003) Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties. J Phys Chem B 107(30):7327–7333

    Article  Google Scholar 

  170. Lu Y, Liu GL, Kim J, Mejia YX et al (2005) Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett 5(1):119–124

    Article  ADS  Google Scholar 

  171. Liu GL, Lu Y, Kim J, Doll JC et al (2005) Magnetic nanocrescents as controllable surface-enhanced raman scattering nanoprobes for biomolecular imaging. Adv Mater 17(22):2683–2688

    Article  Google Scholar 

  172. Lassiter JB, Knight MW, Mirin NA, Halas NJ (2009) Reshaping the plasmonic properties of an individual nanoparticle. Nano Lett 9(12):4326–4332

    Article  ADS  Google Scholar 

  173. Mirin NA, Halas NJ (2009) Light-bending nanoparticles. Nano Lett 9(3):1255–1259

    Article  ADS  Google Scholar 

  174. Cortie M, Ford M (2007) A plasmon-induced current loop in gold semi-shells. Nanotechnology 18(23):235704

    Article  ADS  Google Scholar 

  175. Knight MW, Halas NJ (2008) Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit. New J Phys 10:105006

    Article  Google Scholar 

  176. Mirin NA, Ali TA, Nordlander P, Halas NJ (2010) Perforated semishells: far-field directional control and optical frequency magnetic response. ACS Nano 4(5):2701–2712

    Article  Google Scholar 

  177. Wang H, Brandl DW, Le F, Nordlander P et al (2006) Nanorice: a hybrid plasmonic nanostructure. Nano Lett 6(4):827–832

    Article  ADS  Google Scholar 

  178. Schuck PJ, Fromm DP, Sundaramurthy A, Kino GS et al (2005) Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys Rev Lett 94:017402

    Article  ADS  Google Scholar 

  179. Sanchez EJ, Novotny L, Xie XS (1999) Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys Rev Lett 82(20):4014–4017

    Article  ADS  Google Scholar 

  180. Millstone JE, Hurst SJ, Metraux GS, Cutler JI et al (2009) Colloidal gold and silver triangular nanoprisms. Small 5(6):646–664

    Article  Google Scholar 

  181. Shuford KL, Ratner MA, Schatz GC (2005) Multipolar excitation in triangular nanoprisms. J Chem Phys 123(11):114713

    Article  ADS  Google Scholar 

  182. Jin RC, Cao YC, Hao EC, Metraux GS et al (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425(6957):487–490

    Article  ADS  Google Scholar 

  183. Callegari A, Tonti D, Chergui M (2003) Photochemically grown silver nanoparticles with wavelength-controlled size and shape. Nano Lett 3(11):1565–1568

    Article  ADS  Google Scholar 

  184. Xue C, Mirkin CA (2007) pH-switchable silver nanoprism growth pathways. Angew Chem Int Ed 46(12):2036–2038

    Article  Google Scholar 

  185. Xue C, Metraux GS, Millstone JE, Mirkin CA (2008) Mechanistic study of photomediated triangular silver nanoprism growth. J Am Chem Soc 130(26):8337–8344

    Article  Google Scholar 

  186. Pastoriza-Santos I, Liz-Marzan LM (2002) Formation of pvp-protected metal nanoparticles in dmf. Langmuir 18(7):2888–2894

    Article  Google Scholar 

  187. Malikova N, Pastoriza-Santos I, Schierhorn M, Kotov NA et al (2002) Layer-by-layer assembled mixed spherical and planar gold nanoparticles: control of interparticle interactions. Langmuir 18(9):3694–3697

    Article  Google Scholar 

  188. Kim F, Connor S, Song H, Kuykendall T et al (2004) Platonic gold nanocrystals. Angew Chem Int Ed 43(28):3673–3677

    Article  Google Scholar 

  189. Shankar SS, Rai A, Ankamwar B, Singh A et al (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3(7):482–488

    Article  ADS  Google Scholar 

  190. Millstone JE, Metraux GS, Mirkin CA (2006) Controlling the edge length of gold nanoprisms via a seed-mediated approach. Adv Funct Mater 16(9):1209–1214

    Article  Google Scholar 

  191. Zhang Q, Ge JP, Pham T, Goebl J et al (2009) Reconstruction of silver nanoplates by uv irradiation: tailored optical properties and enhanced stability. Angew Chem Int Ed 48(19):3516–3519

    Article  Google Scholar 

  192. Lee BH, Hsu MS, Hsu YC, Lo CW et al (2010) A facile method to obtain highly stable silver nanoplate colloids with desired surface plasmon resonance wavelengths. J Phys Chem C 114(14):6222–6227

    Article  Google Scholar 

  193. An J, Tang B, Zheng XL, Zhou J et al (2008) Sculpturing effect of chloride ions in shape transformation from triangular to discal silver nanoplates. J Phys Chem C 112(39):15176–15182

    Article  Google Scholar 

  194. Ciou SH, Cao YW, Huang HC, Su DY et al (2009) Sers enhancement factors studies of silver nanoprism and spherical nanoparticle colloids in the presence of bromide ions. J Phys Chem C 113(22):9520–9525

    Article  Google Scholar 

  195. Tang B, An J, Zheng XL, Xu SP et al (2008) Silver nanodisks with tunable size by heat aging. J Phys Chem C 112(47):18361–18367

    Google Scholar 

  196. Tao A, Sinsermsuksakul P, Yang P (2006) Polyhedral silver nanocrystals with distinct scattering signatures. Angew Chem Int Ed 45(28):4597–4601

    Article  Google Scholar 

  197. Khoury CG, Vo-Dinh T (2008) Gold nanostars for surface-enhanced raman scattering: synthesis, characterization and optimization. J Phys Chem C 112(48):18849–18859

    Google Scholar 

  198. Nehl CL, Hafner JH (2008) Shape-dependent plasmon resonances of gold nanoparticles. J Mater Chem 18(21):2415–2419

    Article  Google Scholar 

  199. Xie JP, Lee JY, Wang DIC (2007) Seedless, surfactantless, high-yield synthesis of branched gold nanocrystals in hepes buffer solution. Chem Mater 19(11):2823–2830

    Article  Google Scholar 

  200. Chen SH, Wang ZL, Ballato J, Foulger SH et al (2003) Monopod, bipod, tripod, and tetrapod gold nanocrystals. J Am Chem Soc 125(52):16186–16187

    Article  Google Scholar 

  201. Bakr OM, Wunsch BH, Stellacci F (2006) High-yield synthesis of multi-branched urchin-like gold nanoparticles. Chem Mater 18(14):3297–3301

    Article  Google Scholar 

  202. Kim DY, Yu T, Cho EC, Ma Y et al (2011) Synthesis of gold nano-hexapods with controllable arm lengths and their tunable optical properties. Angew Chem Int Ed 50(28):6328–6331

    Article  Google Scholar 

  203. Wu HL, Chen CH, Huang MH (2009) Seed-mediated synthesis of branched gold nanocrystals derived from the side growth of pentagonal bipyramids and the formation of gold nanostars. Chem Mater 21(1):110–114

    Article  Google Scholar 

  204. Liao HG, Jiang YX, Zhou ZY, Chen SP et al (2008) Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis. Angew Chem Int Ed 47(47):9100–9103

    Article  Google Scholar 

  205. Burt JL, Elechiguerra JL, Reyes-Gasga J, Montejano-Carrizales JM et al (2005) Beyond archimedean solids: star polyhedral gold nanocrystals. J Cryst Growth 285(4):681–691

    Article  ADS  Google Scholar 

  206. Yamamoto M, Kashiwagi Y, Sakata T, Mori H et al (2005) Synthesis and morphology of star-shaped gold nanoplates protected by poly(n-vinyl-2-pyrrolidone). Chem Mater 17(22):5391–5393

    Article  Google Scholar 

  207. Hao F, Nehl CL, Hafner JH, Nordlander P (2007) Plasmon resonances of a gold nanostar. Nano Lett 7(3):729–732

    Article  ADS  Google Scholar 

  208. Skrabalak SE, Chen J, Sun Y, Lu X et al (2008) Gold nanocages: synthesis, properties, and applications. Acc Chem Res 41(12):1587–1595

    Article  Google Scholar 

  209. Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179

    Article  ADS  Google Scholar 

  210. Skrabalak SE, Au L, Li X, Xia Y (2007) Facile synthesis of ag nanocubes and au nanocages. Nat Protoc 2(9):2182–2190

    Article  Google Scholar 

  211. Sun YG, Xia YN (2004) Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J Am Chem Soc 126(12):3892–3901

    Article  Google Scholar 

  212. Chen JY, Wiley B, McLellan J, Xiong YJ et al (2005) Optical properties of pd-ag and pt-ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett 5(10):2058–2062

    Article  ADS  Google Scholar 

  213. Cobley CM, Campbell DJ, Xia Y (2008) Tailoring the optical and catalytic properties of gold-silver nanoboxes and nanocages by introducing palladium. Adv Mater 20(4):748–752

    Article  Google Scholar 

  214. Skrabalak SE, Chen J, Au L, Lu X et al (2007) Gold nanocages for biomedical applications. Adv Mater 19(20):3177–3184

    Article  Google Scholar 

  215. Yang X, Skrabalak SE, Li Z-Y, Xia Y et al (2007) Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent. Nano Lett 7(12):3798–3802

    Article  ADS  Google Scholar 

  216. Chen J, Saeki F, Wiley BJ, Cang H et al (2005) Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 5(3):473–477

    Article  ADS  Google Scholar 

  217. Cang H, Sun T, Li ZY, Chen JY et al (2005) Gold nanocages as contrast agents for spectroscopic optical coherence tomography. Opt Lett 30(22):3048–3050

    Article  ADS  Google Scholar 

  218. Halas NJ, Lal S, Chang W-S, Link S et al (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111(6):3913–3961

    Article  Google Scholar 

  219. Jin RC, Wu GS, Li Z, Mirkin CA et al (2003) What controls the melting properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 125(6):1643–1654

    Article  Google Scholar 

  220. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA et al (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120(9):1959–1964

    Article  Google Scholar 

  221. Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA et al (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 122(19):4640–4650

    Article  Google Scholar 

  222. Tan SJ, Campolongo MJ, Luo D, Cheng WL (2011) Building plasmonic nanostructures with DNA. Nat Nanotechnol 6(5):268–276

    Article  ADS  Google Scholar 

  223. Camden JP, Dieringer JA, Wang Y, Masiello DJ et al (2008) Probing the structure of single-molecule surface-enhanced raman scattering hot spots. J Am Chem Soc 130(38):12616–12617

    Article  Google Scholar 

  224. Dieringer JA, Lettan RB II, Scheidt KA, Van Duyne RP (2007) A frequency domain existence proof of single-molecule surface-enhanced raman spectroscopy. J Am Chem Soc 129(51):16249–16256

    Article  Google Scholar 

  225. Kneipp K, Kneipp H, Kneipp J (2006) Surface-enhanced raman scattering in local optical fields of silver and gold nanoaggregatess - from single-molecule raman spectroscopy to ultrasensitive probing in live cells. Acc Chem Res 39(7):443–450

    Article  Google Scholar 

  226. Kneipp K, Wang Y, Kneipp H, Perelman LT et al (1997) Single molecule detection using surface-enhanced raman scattering (sers). Phys Rev Lett 78(9):1667–1670

    Article  ADS  Google Scholar 

  227. Michaels AM, Nirmal M, Brus LE (1999) Surface enhanced raman spectroscopy of individual rhodamine 6g molecules on large ag nanocrystals. J Am Chem Soc 121(43):9932–9939

    Article  Google Scholar 

  228. Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science 275(5303):1102–1106

    Article  Google Scholar 

  229. Aravind PK, Nitzan A, Metiu H (1981) The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres. Surf Sci 110(1):189–204

    Article  ADS  Google Scholar 

  230. Oubre C, Nordlander P (2005) Finite-difference time-domain studies of the optical properties of nanoshell dimers. J Phys Chem B 109(20):10042–10051

    Article  Google Scholar 

  231. Su KH, Wei QH, Zhang X, Mock JJ et al (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3(8):1087–1090

    Article  ADS  Google Scholar 

  232. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120(1):357–366

    Article  ADS  Google Scholar 

  233. Brown LV, Sobhani H, Lassiter JB, Nordlander P et al (2010) Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano 4(2):819–832

    Article  Google Scholar 

  234. Lassiter JB, Aizpurua J, Hernandez LI, Brandl DW et al (2008) Close encounters between two nanoshells. Nano Lett 8(4):1212–1218

    Article  ADS  Google Scholar 

  235. Talley CE, Jackson JB, Oubre C, Grady NK et al (2005) Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates. Nano Lett 5(8):1569–1574

    Article  ADS  Google Scholar 

  236. Li W, Camargo PHC, Lu X, Xia Y (2009) Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced raman scattering. Nano Lett 9(1):485–490

    Article  ADS  Google Scholar 

  237. Camargo PHC, Au L, Rycenga M, Li W et al (2010) Measuring the sers enhancement factors of dimers with different structures constructed from silver nanocubes. Chem Phys Lett 484(4–6):304–308

    Article  ADS  Google Scholar 

  238. Camargo PHC, Rycenga M, Au L, Xia Y (2009) Isolating and probing the hot spot formed between two silver nanocubes. Angew Chem Int Ed 48(12):2180–2184

    Article  Google Scholar 

  239. Fromm DP, Sundaramurthy A, Kinkhabwala A, Schuck PJ et al (2006) Exploring the chemical enhancement for surface-enhanced raman scattering with au bowtie nanoantennas. J Chem Phys 124(6):061101

    Article  ADS  Google Scholar 

  240. Jackel F, Kinkhabwala AA, Moerner WE (2007) Gold bowtie nanoantennas for surface-enhanced raman scattering under controlled electrochemical potential. Chem Phys Lett 446(4–6):339–343

    Article  ADS  Google Scholar 

  241. Schuck PJ, Fromm DP, Sundaramurthy A, Kino GS et al (2005) Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys Rev Lett 94(1):017402

    Article  ADS  Google Scholar 

  242. Gunnarsson L, Rindzevicius T, Prikulis J, Kasemo B et al (2005) Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. J Phys Chem B 109(3):1079–1087

    Article  Google Scholar 

  243. Pena-Rodriguez O, Pal U, Campoy-Quiles M, Rodriguez-Fernandez L et al (2011) Enhanced fano resonance in asymmetrical au:Ag heterodimers. J Phys Chem C 115(14):6410–6414

    Article  Google Scholar 

  244. Shao L, Woo KC, Chen H, Jin Z et al (2010) Angle- and energy-resolved plasmon coupling in gold nanorod dimers. ACS Nano 4(6):3053–3062

    Article  Google Scholar 

  245. Slaughter LS, Wu Y, Willingham BA, Nordlander P et al (2010) Effects of symmetry breaking and conductive contact on the plasmon coupling in gold nanorod dimers. ACS Nano 4(8):4657–4666

    Article  Google Scholar 

  246. Yang Z-J, Zhang Z-S, Zhang W, Hao Z-H et al (2010) Twinned fano interferences induced by hybridized plasmons in au-ag nanorod heterodimers. Appl Phys Lett 96(13):131113

    Article  ADS  Google Scholar 

  247. Funston AM, Novo C, Davis TJ, Mulvaney P (2009) Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett 9(4):1651–1658

    Article  ADS  Google Scholar 

  248. Jain PK, Eustis S, El-Sayed MA (2006) Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B 110(37):18243–18253

    Article  Google Scholar 

  249. Sonnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23(6):741–745

    Article  Google Scholar 

  250. Jain PK, Huang W, El-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7(7):2080–2088

    Article  ADS  Google Scholar 

  251. Liu GL, Yin Y, Kunchakarra S, Mukherjee B et al (2006) A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting. Nat Nanotechnol 1(1):47–52

    Article  ADS  Google Scholar 

  252. Reinhard BM, Sheikholeslami S, Mastroianni A, Alivisatos AP et al (2007) Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single ecorv restriction enzymes. Proc Natl Acad Sci USA 104(8):2667–2672

    Article  ADS  Google Scholar 

  253. Reinhard BM, Siu M, Agarwal H, Alivisatos AP et al (2005) Calibration of dynamic molecular rule based on plasmon coupling between gold nanoparticles. Nano Lett 5(11):2246–2252

    Article  ADS  Google Scholar 

  254. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule fret. Nat Methods 5(6):507–516

    Article  Google Scholar 

  255. Brandl DW, Mirin NA, Nordlander P (2006) Plasmon modes of nanosphere trimers and quadrumers. J Phys Chem B 110(25):12302–12310

    Article  Google Scholar 

  256. Chuntonov L, Haran G (2011) Trimeric plasmonic molecules: the role of symmetry. Nano Lett 11(6):2440–2445

    Article  ADS  Google Scholar 

  257. Fan JA, Bao K, Wu C, Bao J et al (2010) Fano-like interference in self-assembled plasmonic quadrumer clusters. Nano Lett 10(11):4680–4685

    Article  ADS  Google Scholar 

  258. Rahmani M, Lukiyanchuk B, Ng B, Liew A, Tavakkoli KG et al (2011) Generation of pronounced fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers. Opt Expr 19(6):4949–4956

    Article  ADS  Google Scholar 

  259. Fan JA, Wu C, Bao K, Bao J et al (2010) Self-assembled plasmonic nanoparticle clusters. Science 328(5982):1135–1138

    Article  ADS  Google Scholar 

  260. Lassiter JB, Sobhani H, Fan JA, Kundu J et al (2010) Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett 10(8):3184–3189

    Article  ADS  Google Scholar 

  261. Hentschel M, Dregely D, Vogelgesang R, Giessen H et al (2011) Plasmonic oligomers: the role of individual particles in collective behavior. ACS Nano 5(3):2042–2050

    Article  Google Scholar 

  262. Hentschel M, Saliba M, Vogelgesang R, Giessen H et al (2010) Transition from isolated to collective modes in plasmonic oligomers. Nano Lett 10(7):2721–2726

    Article  ADS  Google Scholar 

  263. de Waele R, Koenderink AF, Polman A (2007) Tunable nanoscale localization of energy on plasmon particle arrays. Nano Lett 7(7):2004–2008

    Article  ADS  Google Scholar 

  264. Maier SA, Kik PG, Atwater HA (2003) Optical pulse propagation in metal nanoparticle chain waveguides. Phys Rev B 67(20):205402

    Article  ADS  Google Scholar 

  265. Auguie B, Barnes WL (2008) Collective resonances in gold nanoparticle arrays. Phys Rev Lett 101(14):143902

    Article  ADS  Google Scholar 

  266. Giannini V, Vecchi G, Rivas JG (2010) Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas. Phys Rev Lett 105(26):266801

    Article  ADS  Google Scholar 

  267. Vecchi G, Giannini V, Rivas JG (2009) Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. Phys Rev Lett 102(14):146807

    Article  ADS  Google Scholar 

  268. Chu YZ, Schonbrun E, Yang T, Crozier KB (2008) Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl Phys Lett 93(18):181108

    Article  ADS  Google Scholar 

  269. Lamprecht B, Schider G, Lechner RT, Ditlbacher H et al (2000) Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance. Phys Rev Lett 84(20):4721–4724

    Article  ADS  Google Scholar 

  270. Hicks EM, Zou SL, Schatz GC, Spears KG et al (2005) Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett 5(6):1065–1070

    Article  ADS  Google Scholar 

  271. Evanoff DD, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. Chemphyschem 6(7):1221–1231

    Article  Google Scholar 

  272. Malynych S, Chumanov G (2003) Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays. J Am Chem Soc 125(10):2896–2898

    Article  Google Scholar 

  273. Zou SL, Schatz GC (2004) Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. J Chem Phys 121(24):12606–12612

    Article  ADS  Google Scholar 

  274. Mayshev AV, Malyshev VA, Knoester J (2008) Frequency-controlled localization of optical signals in graded plasmonic chains. Nano Lett 8(8):2369–2372

    Article  ADS  Google Scholar 

  275. Sukharev M, Seideman T (2006) Phase and polarization control as a route to plasmonic nanodevices. Nano Lett 6(4):715–719

    Article  ADS  Google Scholar 

  276. Nordlander P (2008) Plasmonics – subwavelength imaging in colour. Nat Photon 2(7):387–388

    Article  ADS  Google Scholar 

  277. Kawata S, Ono A, Verma P (2008) Subwavelength colour imaging with a metallic nanolens. Nat Photon 2(7):438–442

    Article  Google Scholar 

  278. Brongersma ML, Hartman JW, Atwater HA (2000) Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys Rev B 62(24):16356–16359

    Article  ADS  Google Scholar 

  279. Zou SL, Schatz GC (2006) Metal nanoparticle array waveguides: proposed structures for subwavelength devices. Phys Rev B 74(12):125111

    Article  ADS  Google Scholar 

  280. Nomura W, Ohtsu M, Yatsui T (2005) Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion. Appl Phys Lett 86(18):181108

    Article  ADS  Google Scholar 

  281. Maier SA, Brongersma ML, Kik PG, Atwater HA (2002) Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy. Phys Re B 65(19):193408

    Article  ADS  Google Scholar 

  282. Maier SA, Brongersma ML, Kik PG, Meltzer S et al (2001) Plasmonics – a route to nanoscale optical devices. Adv Mater 13(19):1501–1505

    Article  Google Scholar 

  283. Salerno M, Krenn JR, Hohenau A, Ditlbacher H et al (2005) The optical near-field of gold nanoparticle chains. Opt Commun 248(4–6):543–549

    Article  ADS  Google Scholar 

  284. Bouhelier A, Bachelot R, Im JS, Wiederrecht GP et al (2005) Electromagnetic interactions in plasmonic nanoparticle arrays. J Phys Chem B 109(8):3195–3198

    Article  Google Scholar 

  285. Maier SA, Kik PG, Atwater HA, Meltzer S et al (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2(4):229–232

    Article  ADS  Google Scholar 

  286. Tao A, Sinsermsuksakul P, Yang P (2007) Tunable plasmonic lattices of silver nanocrystals. Nat Nanotechnol 2(7):435–440

    Article  ADS  Google Scholar 

  287. Tao AR, Ceperley DP, Sinsermsuksakul P, Neureuther AR et al (2008) Self-organized silver nanoparticles for three-dimensional plasmonic crystals. Nano Lett 8(11):4033–4038

    Article  ADS  Google Scholar 

  288. Tao AR, Huang J, Yang P (2008) Langmuir-blodgettry of nanocrystals and nanowires. Acc Chem Res 41(12):1662–1673

    Article  Google Scholar 

  289. Wang HH, Liu CY, Wu SB, Liu NW et al (2006) Highly raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps. Adv Mater 18(4):491–495

    Article  Google Scholar 

  290. Genov DA, Sarychev AK, Shalaev VM, Wei A (2004) Resonant field enhancements from metal nanoparticle arrays. Nano Lett 4(1):153–158

    Article  ADS  Google Scholar 

  291. Wang H, Levin CS, Halas NJ (2005) Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates. J Am Chem Soc 127(43):14992–14993

    Article  Google Scholar 

  292. Wei A, Kim B, Sadtler B, Tripp SL (2001) Tunable surface-enhanced raman scattering from large gold nanoparticle arrays. Chemphyschem 2(12):743–745

    Article  Google Scholar 

  293. Lee SJ, Morrill AR, Moskovits M (2006) Hot spots in silver nanowire bundles for surface-enhanced raman spectroscopy. J Am Chem Soc 128(7):2200–2201

    Article  Google Scholar 

  294. Wang H, Kundu J, Halas NJ (2007) Plasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrate. Angew Chem Int Ed 46(47):9040–9044

    Article  Google Scholar 

  295. Le F, Brandl DW, Urzhumov YA, Wang H et al (2008) Metallic nanoparticle arrays: a common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption. ACS Nano 2(4):707–718

    Article  Google Scholar 

  296. Pillai S, Green MA (2010) Plasmonics for photovoltaic applications. Solar Energy Mater Solar Cells 94(9):1481–1486

    Article  Google Scholar 

  297. Ferry VE, Sweatlock LA, Pacifici D, Atwater HA (2008) Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett 8(12):4391–4397

    Article  ADS  Google Scholar 

  298. Saeta PN, Ferry VE, Pacifici D, Munday JN et al (2009) How much can guided modes enhance absorption in thin solar cells? Opt Express 17(23):20975–20990

    Article  Google Scholar 

  299. Pala RA, White J, Barnard E, Liu J et al (2009) Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv Mater 21(34):3504–3509

    Article  Google Scholar 

  300. Ferry VE, Munday JN, Atwater HA (2010) Design considerations for plasmonic photovoltaics. Adv Mater 22(43):4794–4808

    Article  Google Scholar 

  301. Yablonovitch E, Cody GD (1982) Intensity enhancement in textured optical sheets for solar-cells. IEEE Trans Elect Dev 29(2):300–305

    Article  ADS  Google Scholar 

  302. Green MA (1984) Limits on the open-circuit voltage and efficiency of silicon solar-cells imposed by intrinsic auger processes. IEEE Trans Elect Dev 31(5):671–678

    Article  ADS  Google Scholar 

  303. Campbell P, Green MA (1987) Light trapping properties of pyramidally textured surfaces. J Appl Phys 62(1):243–249

    Article  ADS  Google Scholar 

  304. Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Expr 16(26):21793–21800

    Article  ADS  Google Scholar 

  305. Novotny L (2007) Effective wavelength scaling for optical antennas. Phys Rev Lett 98(26):266802

    Article  ADS  Google Scholar 

  306. Fischer UC, Pohl DW (1989) Observation of single-particle plasmons by near-field optical microscopy. Phys Rev Lett 62(4):458–461

    Article  ADS  Google Scholar 

  307. Novotny L, Stranick SJ (2006) Near-field optical microscopy and spectroscopy with pointed probes. Ann Rev Phys Chem 57:303–331

    Article  ADS  Google Scholar 

  308. Novotny L, van Hulst N (2011) Antennas for light. Nat Photon 5(2):83–90

    Article  ADS  Google Scholar 

  309. Alu A, Engheta N (2008) Tuning the scattering response of optical nanoantennas with nanocircuit loads. Nat Photon 2(5):307–310

    Article  Google Scholar 

  310. Muhlschlegel P, Eisler HJ, Martin OJF, Hecht B et al (2005) Resonant optical antennas. Science 308(5728):1607–1609

    Article  ADS  Google Scholar 

  311. Stipe BC, Strand TC, Poon CC, Balamane H et al (2010) Magnetic recording at 1.5 pb m(-2) using an integrated plasmonic antenna. Nat Photon 4(7):484–488

    Article  ADS  Google Scholar 

  312. Challener WA, Peng CB, Itagi AV, Karns D et al (2009) Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nat Photon 3(4):220–224

    Article  ADS  Google Scholar 

  313. Otto A (2006) On the significance of shalaev's "hot spots' in ensemble and single-molecule SERS by adsorbates on metallic films at the percolation threshold. J Raman Spectros 37(9):937–947

    Article  ADS  Google Scholar 

  314. Li KR, Stockman MI, Bergman DJ (2003) Self-similar chain of metal nanospheres as an efficient nanolens. Phys Rev Lett 91(22):227402

    Article  ADS  Google Scholar 

  315. Stockman MI, Faleev SV, Bergman DJ (2001) Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics? Phys Rev Lett 87(16):167401

    Article  ADS  Google Scholar 

  316. Gresillon S, Aigouy L, Boccara AC, Rivoal JC et al (1999) Experimental observation of localized optical excitations in random metal-dielectric films. Phys Rev Lett 82(22):4520–4523

    Article  ADS  Google Scholar 

  317. Tsai DP, Kovacs J, Wang ZH, Moskovits M et al (1994) Photon scanning-tunneling-microscopy images of optical-excitations of fractal metal colloid clusters. Phys Rev Lett 72(26):4149–4152

    Article  ADS  Google Scholar 

  318. Albrecht MG, Creighton JA (1977) Anomalously intense raman-spectra of pyridine at a silver electrode. J Am Chem Soc 99(15):5215–5217

    Article  Google Scholar 

  319. Jeanmaire DL, Vanduyne RP (1977) Surface raman spectroelectrochemistry. 1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. J Electroanal Chem 84(1):1–20

    Article  Google Scholar 

  320. Haes AJ, Haynes CL, McFarland AD, Schatz GC et al (2005) Plasmonic materials for surface-enhanced sensing and spectroscopy. Mrs Bull 30(5):368–375

    Article  Google Scholar 

  321. Lakowicz JR, Geddes CD, Gryczynski I, Malicka J et al (2004) Advances in surface-enhanced fluorescence. J Fluoresc 14(4):425–441

    Article  Google Scholar 

  322. Chen Y, Munechika K, Ginger DS (2007) Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett 7(3):690–696

    Article  ADS  Google Scholar 

  323. Munechika K, Chen Y, Tillack AF, Kulkarni AP et al (2010) Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms. Nano Lett 10(7):2598–2603

    Article  ADS  Google Scholar 

  324. Wu XY, Liu HJ, Liu JQ, Haley KN et al (2003) Immunofluorescent labeling of cancer marker her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21(1):41–46

    Article  Google Scholar 

  325. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22(1):47–52

    Article  Google Scholar 

  326. Melancon MP, Lu W, Yang Z, Zhang R et al (2008) In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Ther 7(6):1730–1739

    Article  Google Scholar 

  327. Lu W, Xiong CY, Zhang GD, Huang Q et al (2009) Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres. Clin Cancer Res 15(3):876–886

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jing, H., Zhang, L., Wang, H. (2013). Geometrically Tunable Optical Properties of Metal Nanoparticles. In: Kumar, C. (eds) UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27594-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27594-4_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27593-7

  • Online ISBN: 978-3-642-27594-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics