Energy-Efficient Cryptographic Engineering Paradigm

  • Marine Minier
  • Raphael C. -W. Phan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7039)


We motivate the notion of green cryptographic engineering, wherein we discuss several approaches to energy minimization or energy efficient cryptographic processes. We propose the amortization of computations paradigm in the design of cryptographic schemes; this paradigm can be used in line with existing approaches. We describe an example structure that exemplifies this paradigm and at the end of the paper we ask further research questions for this direction.


Wireless Sensor Network Hash Function Block Cipher Security Protocol Stream Cipher 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    3rd Generation Partnership Project, “Specification of the MILENAGE Algorithm Set: An Example Algorithm Set for the 3GPP Authentication and Key Generation Functions f1, f1*, f2, f3, f4, f5 and f5* - Document 2 (TS 35.206): Algorithm Specification; Document 5 (TR 35.909): Summary and Results of Design and Evaluation”,
  2. 2.
    Badel, S., Dağtekin, N., Nakahara, J., Ouafi, K., Reffé, N., Sepehrdad, P., Sušil, P., Vaudenay, S.: ARMADILLO: A Multi-purpose Cryptographic Primitive Dedicated to Hardware. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 398–412. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Berger, T.P., Minier, M., Pousse, B.: Software Oriented Stream Ciphers Based upon FCSRs in Diversified Mode. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 119–135. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Bicakci, K., Gultekin, H., Tavli, B.: The Impact of One-Time Energy Costs on Network Lifetime in Wireless Sensor Networks. IEEE Communications Letters 13(12), 905–907 (2009)CrossRefGoogle Scholar
  5. 5.
    The Climate Group, “SMART 2020: Enabling the Low Carbon Economy in the Information Age” Global e-Sustainability Initiative, GeSI (2008)Google Scholar
  6. 6.
    de Meulenaer, G., Gosset, F., Standaert, F.-X., Pereira, O.: On the Energy Cost of Communication and Cryptography in Wireless Sensor Networks. In: Proc. WiMob 2008, pp. 580–585. IEEE (2008)Google Scholar
  7. 7.
    Delgado-Mohatar, O., Sierra, J.M., Brankovic, L., Fúster-Sabater, A.: An Energy-Efficient Symmetric Cryptography Based Authentication Scheme for Wireless Sensor Networks. In: Samarati, P., Tunstall, M., Posegga, J., Markantonakis, K., Sauveron, D. (eds.) WISTP 2010. LNCS, vol. 6033, pp. 332–339. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Dodis, Y., Steinberger, J.: Message Authentication Codes from Unpredictable Block Ciphers. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 267–285. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Gauravaram, P., Millan, W.L., Dawson, E., Viswanathan, K.: Constructing Secure Hash Functions by Enhancing Merkle-Damgård Construction. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 407–420. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Gilbert, H.: The Security of ”One-Block-to-Many” Modes of Operation. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 376–395. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Greenemeier, L.: Can the World’s Telecoms Slash their Energy Consumption 1000-Fold? Scientific American (January 11, 2010)Google Scholar
  12. 12.
    Halevi, S., Hall, W.E., Jutla, C.S.: The Hash Function “Fugue”. SHA-3 Candidate Submission (September 15, 2009)Google Scholar
  13. 13.
    Kaps, J.-P., Gaubatz, G., Sunar, B.: Cryptography on a Speck of Dust. IEEE Computers 40(2), 38–44 (2007)CrossRefGoogle Scholar
  14. 14.
    Kayalvizhi, R., Vijayalakshmi, M., Vaidehi, V.: Energy Analysis of RSA and ELGAMAL Algorithms for Wireless Sensor Networks. In: Meghanathan, N., Boumerdassi, S., Chaki, N., Nagamalai, D. (eds.) CNSA 2010. CCIS, vol. 89, pp. 172–180. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Lehmann, A., Tessaro, S.: A Modular Design for Hash Functions: Towards Making the Mix-Compress-Mix Approach Practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 364–381. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Pike Research, “’Green’ Telecom Equipment will Represent 46% of Network Capital Expenditures by 2013” Pike Research (June 9, 2009)Google Scholar
  17. 17.
    Preneel, B., Govaerts, R., Vandewalle, J.: Hash Functions Based on Block Ciphers: A Synthetic Approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 368–378. Springer, Heidelberg (1994)Google Scholar
  18. 18.
    Rogaway, P., Steinberger, J.: Security/Efficiency Tradeoffs for Permutation-Based Hashing. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 220–236. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Rogaway, P., Steinberger, J.: Constructing Cryptographic Hash Functions from Fixed-Key Blockciphers. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 433–450. Springer, Heidelberg (2008)Google Scholar
  20. 20.
    Shamir, A., Tauman, Y.: Improved Online/Offline Signature Schemes. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Shrimpton, T., Stam, M.: Building a Collision-Resistant Compression Function from Non-Compressing Primitives. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 643–654. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Szczechowiak, P., Kargi, A., Scott, M., Collier, M.: On the Application of Pairing based Cryptography to Wireless Sensor Networks. In: Proc. WiSec 2009, pp. 1–12. ACM (2009)Google Scholar
  23. 23.
    Troutman, J., Rijmen, V.: Green Cryptography: Cleaner Engineering through Recycling. IEEE Security and Privacy 7(4), 71–73 (2009)CrossRefGoogle Scholar
  24. 24.
    Weis, R., Effelsberg, W., Lucks, S.: Remotely Keyed Encryption with Java Cards: a Secure and Efficient Method to Encrypt Multimedia Streams. In: Proc. ICME 2000, pp. 537–540. IEEE (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marine Minier
    • 1
  • Raphael C. -W. Phan
    • 2
  1. 1.INSA-Lyon, CITIUniversité de Lyon, INRIAVilleurbanneFrance
  2. 2.Electronic, Electrical & Systems EngineeringLoughborough UniversityLeicestershireUK

Personalised recommendations