Abstract
Carbon nanotubes (CNTs) belong to the family of synthetic carbon allotropes and are characterized by a network of sp2 hybridized carbon atoms. The one dimensional (1D) carbon nanotubes can thus be queued between their zero dimensional relatives fullerenes and the two dimensional (2D) relative graphene. The structure of nanotubes has first been described as helical microtubules of graphitic carbon in 1991 by Iijima who generated the novel material by an arc discharge evaporation process originally designed for the production of fullerenes. Since then, extensive research has shed light into the structure and properties of this highly remarkable carbon allotrope.
Keywords
Sodium Dodecyl Sulfate Zeta Potential Sodium Dodecyl Benzene Sulfonate Density Gradient Ultracentrifugation Chiral Angle
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.S. Iijima, Nature 354, 56–58 (1991)Google Scholar
- 2.A. Hirsch, Angew. Chem. Int. Ed. 41, 1853–1859 (2002)Google Scholar
- 3.H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318, 162–163 (1985)Google Scholar
- 4.A. Hirsch, M. Brettreich, Fullerenes–Chemistry and Reations (Wiley, Weinheim, 2005)Google Scholar
- 5.K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)Google Scholar
- 6.A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)Google Scholar
- 7.M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer, Berlin, 2001)Google Scholar
- 8.K. Tanaka, T. Yamabe, K. Fukui, The Science and Technology of Carbon Nanotubes (Elsevier, Oxford, 1999)Google Scholar
- 9.M.J. O’Connell (ed.), Carbon Nanotubes: Properties and Applications (CRC Press LLC, Boca Raton, 2006)Google Scholar
- 10.S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley, Weinheim, 2004)Google Scholar
- 11.A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Springer, Berlin, 2007)Google Scholar
- 12.R. Saito, M.S. Dresselhaus, G. Dresselhaus, Physical Properties of Carbon Nanotubes (World Scientific Pub Co, London, 1998)Google Scholar
- 13.L. Kelly, M. Meyyappan, Carbon Nanotubes: Science and Applications (CRC Press Inc, Boca Raton, 2004)Google Scholar
- 14.M.S. Dresselhaus, G. Dresselhaus, R. Saito, Phys. Rev. B Condens. Matter 45, 6234–6242 (1992)Google Scholar
- 15.A. Jung, Dissertation, University of Erlangen-Nürnberg (Erlangen), 2007Google Scholar
- 16.R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B Condens. Matter 46, 1804–1811 (1992)Google Scholar
- 17.R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297, 787–792 (2002)Google Scholar
- 18.P. Avouris, Acc. Chem. Res. 35, 1026–1034 (2002)Google Scholar
- 19.L. Vaisman, H.D. Wagner, G. Marom, Adv. Colloid Interface Sci. 128–130, 37–46 (2006)Google Scholar
- 20.N. Grossiord, J. Loos, O. Regev, C.E. Koning, Chem. Mater. 18, 1089–1099 (2006)Google Scholar
- 21.N. Grobert, Mater. Today 10, 28–35 (2007)Google Scholar
- 22.L.A. Girifalco, M. Hodak, R.S. Lee, Phys. Rev. B 62, 13104–13110 (2000)Google Scholar
- 23.S. Nuriel, L. Liu, A.H. Barber, H.D. Wagner, Chem. Phys. Lett. 404, 263–266 (2005)Google Scholar
- 24.M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley, Science 297, 593–596 (2002)Google Scholar
- 25.C. Richard, F. Balavoine, P. Schultz, T.W. Ebbesen, C. Mioskowski, Science 300, 775–778 (2003)Google Scholar
- 26.K. Yurekli, C.A. Mitchell, R. Krishnamoorti, J. Am. Chem. Soc. 126, 9902–9903 (2004)Google Scholar
- 27.M.S. Strano, V.C. Moore, M.K. Miller, M.J. Allen, E.H. Haroz, C. Kittrell, R.H. Hauge, R.E. Smalley, J. Nanosci. Nanotechnol. 3, 81–86 (2003)Google Scholar
- 28.M.F. Islam, E. Rojas, D.M. Bergey, A.T. Johnson, A.G. Yodh, Nano Lett. 3, 269–273 (2003)Google Scholar
- 29.W. Wenseleers, I.I. Vlasov, E. Goovaerts, E.D. Obraztsova, A.S. Lobach, A. Bouwen, Adv. Funct. Mater. 14, 1105–1112 (2004)Google Scholar
- 30.O. Matarredona, H. Rhoads, Z. Li, J.H. Harwell, L. Balzano, D.E. Resasco, J. Phys. Chem. B 107, 13357–13367 (2003)Google Scholar
- 31.T. Okazaki, T. Saito, K. Matsuura, S. Ohshima, M. Yumura, S. Iijima, Nano Lett. 5, 2618–2623 (2005)Google Scholar
- 32.R. Haggenmueller, S.S. Rahatekar, J.A. Fagan, J. Chun, M.L. Becker, R.R. Naik, T. Krauss, L. Carlson, J.F. Kadla, P.C. Trulove, D.F. Fox, H.C. DeLong, Z. Fang, S.O. Kelley, J.W. Gilman, Langmuir 24, 5070–5078 (2008)Google Scholar
- 33.L. Jiang, L. Gao, J. Sun, J. Colloid Interface Sci. 260, 89–94 (2003)Google Scholar
- 34.N.R. Tummala, A. Striolo, ACS Nano 3, 595–602 (2009)Google Scholar
- 35.Z. Sun, V. Nicolosi, D. Rickard, S.D. Bergin, D. Aherne, J.N. Coleman, J. Phys. Chem. C 112, 10692–10699 (2008)Google Scholar
- 36.A. Ishibashi, N. Nakashima, Bull. Chem. Soc. Jpn. 79, 357–359 (2006)Google Scholar
- 37.A. Ishibashi, N. Nakashima, Chem. Eur. J. 12, 7595–7602 (2006)Google Scholar
- 38.V.C. Moore, M.S. Strano, E.H. Haroz, R.H. Hauge, R.E. Smalley, J. Schmidt, Y. Talmon, Nano Lett. 3, 1379–1382 (2003)Google Scholar
- 39.N. Grossiord, O. Regev, J. Loos, J. Meuldijk, C.E. Koning, Anal. Chem. 77, 5135–5139 (2005)Google Scholar
- 40.B.R. Priya, H.J. Byrne, J. Phys. Chem. C 112, 332–337 (2008)Google Scholar
- 41.J.-Y. Shin, T. Premkumar, K.E. Geckeler, Chem. Eur. J. 14, 6044–6048 (2008)Google Scholar
- 42.S. Utsumi, M. Kanamaru, H. Honda, H. Kanoh, H. Tanaka, T. Ohkubo, H. Sakai, M. Abe, K. Kaneko, J. Colloid Interface Sci. 308, 276–284 (2007)Google Scholar
- 43.N. Nakashima, Y. Tomonari, H. Murakami, Chem. Lett. pp. 638–639, (2002) Google Scholar
- 44.Y. Tomonari, H. Murakami, N. Nakashima, Chem. Eur. J. 12, 4027–4034 (2006)Google Scholar
- 45.T. Fujigaya, N. Nakashima, Polym. J. 40, 577–589 (2008)Google Scholar
- 46.H. Paloniemi, T. Aeaeritalo, T. Laiho, H. Liuke, N. Kocharova, K. Haapakka, F. Terzi, R. Seeber, J. Lukkari, J. Phys. Chem. B 109, 8634–8642 (2005)Google Scholar
- 47.J. Chen, C.P. Collier, J. Phys. Chem. B 109, 7605–7609 (2005)Google Scholar
- 48.D.M. Guldi, G.M.A. Rahman, N. Jux, N. Tagmatarchis, M. Prato, Angew. Chem. Int. Ed. 43, 5526–5530 (2004)Google Scholar
- 49.D.M. Guldi, G.N.A. Rahman, J. Ramey, M. Marcaccio, D. Paolucci, F. Paolucci, S. Qin, W.T. Ford, D. Balbinot, N. Jux, N. Tagmatarchis, M. Prato, Chem. Commun. pp. 2034–2035, (2004) Google Scholar
- 50.Y.-L. Zhao, J.F. Stoddart, Acc. Chem. Res. 42, 1161–1171 (2009)Google Scholar
- 51.M.R. Diehl, S.N. Yaliraki, R.A. Beckman, M. Barahona, J.R. Heath, Angew. Chem. Int. Ed. 41, 353–356 (2002)Google Scholar
- 52.J. L. Bahr, E. T. Mickelson, M. J. Bronikowski, R. E. Smalley, J. M. Tour, Chem. Commun. pp. 193–194 (2001)Google Scholar
- 53.S. Niyogi, M.A. Hamon, D.E. Perea, C.B. Kang, B. Zhao, S.K. Pal, A.E. Wyant, M.E. Itkis, R.C. Haddon, J. Phys. Chem. B 107, 8799–8804 (2003)Google Scholar
- 54.D.S. Kim, D. Nepal, K.E. Geckeler, Small 1, 1117–1124 (2005)Google Scholar
- 55.S.B. Fagan, A.G. Souza Filho, J.O.G. Lima, J. Mendes Filho, O.P. Ferreira, I.O. Mazali, O.L. Alves, M.S. Dresselhaus, Nano Lett. 4, 1285–1288 (2004)Google Scholar
- 56.K.D. Ausman, R. Piner, O. Lourie, R.S. Ruoff, M. Korobov, J. Phys. Chem. B 104, 8911–8915 (2000)Google Scholar
- 57.B.J. Landi, H.J. Ruf, J.J. Worman, R.P. Raffaelle, J. Phys. Chem. B 108, 17089–17095 (2004)Google Scholar
- 58.J. Liu, M.J. Casavant, M. Cox, D.A. Walters, P. Boul, W. Lu, A.J. Rimberg, K.A. Smith, D.T. Colbert, R.E. Smalley, Chem. Phys. Lett. 303, 125–129 (1999)Google Scholar
- 59.C.A. Furtado, U.J. Kim, H.R. Gutierrez, L. Pan, E.C. Dickey, P.C. Eklund, J. Am. Chem. Soc. 126, 6095–6105 (2004)Google Scholar
- 60.J. Wang, W.J. Blau, J. Phys. Chem. C 112, 2298–2303 (2008)Google Scholar
- 61.Q. Cheng, S. Debnath, E. Gregan, H.J. Byrne, J. Phys. Chem. C 112, 20154–20158 (2008)Google Scholar
- 62.J.N. Coleman, Adv. Funct. Mater. 19, 3680–3695 (2009)Google Scholar
- 63.S. Giordani, S.D. Bergin, V. Nicolosi, S. Lebedkin, M.M. Kappes, W.J. Blau, J.N. Coleman, J. Phys. Chem. B 110, 15708–15718 (2006)Google Scholar
- 64.S.D. Bergin, V. Nicolosi, P.V. Streich, S. Giordani, Z. Sun, A.H. Windle, P. Ryan, N.P.P. Niraj, Z.-T.T. Wang, L. Carpenter, W.J. Blau, J.J. Boland, J.P. Hamilton, J.N. Coleman, Adv. Mater. 20, 1876–1881 (2008)Google Scholar
- 65.S.D. Bergin, Z. Sun, D. Rickard, P.V. Streich, J.P. Hamilton, J.N. Coleman, ACS Nano 3, 2340–2350 (2009)Google Scholar
- 66.S.D. Bergin, Z.-Y. Sun, P. Streich, J. Hamilton, J.N. Coleman, J. Phys. Chem. C 114, 231–237 (2010)Google Scholar
- 67.T.G. Hedderman, S.M. Keogh, G. Chambers, H.J. Byrne, J. Phys. Chem. B 108, 18860–18865 (2004)Google Scholar
- 68.S.I. Pascu, N. Kuganathan, L.H. Tong, R.M.J. Jacobs, P.J. Barnard, B.T. Chu, Y. Huh, G. Tobias, C.G. Salzmann, J.K.M. Sanders, M.L.H. Green, J.C. Green, J. Mater. Chem. 18, 2781–2788 (2008)Google Scholar
- 69.H. Murakami, T. Nomura, N. Nakashima, Chem. Phys. Lett. 378, 481–485 (2003)Google Scholar
- 70.A. Ikeda, Y. Tanaka, K. Nobusawa, J.-I. Kikuchi, Langmuir 23, 10913–10915 (2007)Google Scholar
- 71.K. Nobusawa, A. Ikeda, J.-i. Kikuchi, S.-i. Kawano, N. Fujita, S. Shinkai, Angew. Chem. Int. Ed. 47, 4577–4580 (2008)Google Scholar
- 72.K.K. Kim, S.-M. Yoon, J.-Y. Choi, J. Lee, B.-K. Kim, J.M. Kim, J.-H. Lee, U. Paik, M.H. Park, C.W. Yang, K.H. An, Y. Chung, Y.H. Lee, Adv. Funct. Mater. 17, 1775–1783 (2007)Google Scholar
- 73.A. Mateo-Alonso, C. Ehli, K.H. Chen, D.M. Guldi, M. Prato, J. Phys. Chem. A 111, 12669–12673 (2007)Google Scholar
- 74.J.-H. Lee, S.-M. Yoon, K.K. Kim, I.-S. Cha, Y.J. Park, J.-Y. Choi, Y.H. Lee, U. Paik, J. Phys. Chem. C 112, 15267–15273 (2008)Google Scholar
- 75.N. Nakashima, S. Okuzono, H. Murakami, T. Nakai, K. Yoshikawa, Chem. Lett. 32, 456–457 (2003)Google Scholar
- 76.M. Zheng, A. Jagota, E.D. Semke, B.A. Diner, R.S. McLean, S.R. Lustig, R.E. Richardson, N.G. Tassi, Nat. Mater. 2, 338–342 (2003)Google Scholar
- 77.X. Tu, M. Zheng, Nano Res. 1, 185–194 (2008)Google Scholar
- 78.F. Balavoine, P. Schultz, C. Richard, V. Mallouh, T.W. Ebbesen, C. Mioskowski, Angew. Chem. Int. Ed. 38, 1912–1915 (1999)Google Scholar
- 79.R. Bandyopadhyaya, E. Nativ-Roth, O. Regev, R. Yerushalmi-Rozen, Nano Lett. 2, 25–28 (2002)Google Scholar
- 80.G.R. Dieckmann, A.B. Dalton, P.A. Johnson, J. Razal, J. Chen, G.M. Giordano, E. Munoz, I.H. Musselman, R.H. Baughman, R.K. Draper, J. Am. Chem. Soc. 125, 1770–1777 (2003)Google Scholar
- 81.M.S. Arnold, M.O. Guler, M.C. Hersam, S.I. Stupp, Langmuir 21, 4705–4709 (2005)Google Scholar
- 82.D.B. Romero, M. Carrard, W. De Heer, L. Zuppiroli, Adv. Mater. 8, 899–902 (1996)Google Scholar
- 83.N. Nakashima, T. Fujigaya, Chem. Lett. 36, 692–697 (2007)Google Scholar
- 84.D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 106, 1105–1136 (2006)Google Scholar
- 85.A. Hirsch, O. Vostrowsky, Top. Curr. Chem. 245, 193–237 (2005)Google Scholar
- 86.M.C. Hersam, Nat. Nanotechnol. 3, 387–394 (2008)Google Scholar
- 87.R. Krupke, F. Hennrich, Adv. Eng. Mater. 7, 111–116 (2005)Google Scholar
- 88.S. Banerjee, T. Hemraj-Benny, S.S. Wong, J. Nanosci. Nanotechnol. 5, 841–855 (2005)Google Scholar
- 89.R. Krupke, F. Hennrich, v. Lohneysen Hilbert, M. Kappes, Science 301, 344–347, (2003)Google Scholar
- 90.L.X. Benedict, S.G. Louie, M.L. Cohen, Phys. Rev. B: Condens. Matter 52, 8541–8549 (1995)Google Scholar
- 91.N. Mureau, E. Mendoza, S.R.P. Silva, K.F. Hoettges, M.P. Hughes, Appl. Phys. Lett. 88, 243109/243101–243109/243103, (2006) Google Scholar
- 92.T. Lutz, K.J. Donovan, Carbon 43, 2508–2513 (2005)Google Scholar
- 93.H. Peng, N.T. Alvarez, C. Kittrell, R.H. Hauge, H.K. Schmidt, J. Am. Chem. Soc. 128, 8396–8397 (2006)Google Scholar
- 94.X. Tu, S. Manohar, A. Jagota, M. Zheng, Nature 460, 250–253 (2009)Google Scholar
- 95.T. Tanaka, H. Jin, Y. Miyata, H. Kataura, Appl. Phys. Express, 1, 114001/114001–114001/114003, (2008) Google Scholar
- 96.T. Tanaka, H. Jin, Y. Miyata, S. Fujii, H. Suga, Y. Naitoh, T. Minari, T. Miyadera, K. Tsukagoshi, H. Kataura, Nano Lett. 9, 1497–1500 (2009)Google Scholar
- 97.N. Nair, W.-J. Kim, R.D. Braatz, M.S. Strano, Langmuir 24, 1790–1795 (2008)Google Scholar
- 98.F. Hennrich, K. Arnold, S. Lebedkin, A. Quintilla, W. Wenzel, M.M. Kappes, phys. stat. so. (b) 244, 3896–3900 (2007)Google Scholar
- 99.M.J. Bronikowski, P.A. Willis, D.T. Colbert, K.A. Smith, R.E. Smalley, J. Vac. Sci. Technol., A 19, 1800–1805 (2001)Google Scholar
- 100.B. Kitiyanan, W.E. Alvarez, J.H. Harwell, D.E. Resasco, Chem. Phys. Lett. 317, 497–503 (2000)Google Scholar
- 101.M.S. Arnold, S.I. Stupp, M.C. Hersam, Nano Lett. 5, 713–718 (2005)Google Scholar
- 102.M.S. Arnold, A.A. Green, J.F. Hulvat, S.I. Stupp, M.C. Hersam, Nat. Nanotechnol. 1, 60–65 (2006)Google Scholar
- 103.J. Crochet, M. Clemens, T. Hertel, J. Am. Chem. Soc. 129, 8058–8059 (2007)Google Scholar
- 104.J. Crochet, M. Clemens, T. Hertel, phys. stat. sol. (b) 244, 3964–3968 (2007)Google Scholar
- 105.Y. Miyata, K. Yanagi, Y. Maniwa, H. Kataura, J. Phys. Chem. C 112, 3591–3596 (2008)Google Scholar
- 106.L. Wei, B. Wang, T.H. Goh, L.-J. Li, Y. Yang, M.B. Chan-Park, Y. Chen, J. Phys. Chem. B 112, 2771–2774 (2008)Google Scholar
- 107.K. Yanagi, Y. Miyata, H. Kataura, Appl. Phys. Express 1, 034003/034001–034003/034003 (2008)Google Scholar
- 108.K. Yanagi, T. Iitsuka, S. Fujii, H. Kataura, J. Phys. Chem. C 112, 18889–18894 (2008)Google Scholar
- 109.Y. Sato, K. Yanagi, Y. Miyata, K. Suenaga, H. Kataura, S. Iijima, Nano Lett. 8, 3151–3154 (2008)Google Scholar
- 110.Y. Miyata, K. Yanagi, Y. Maniwa, H. Kataura, Phys. stat. sol. (b) 245, 2233–2238 (2008)Google Scholar
- 111.S. Niyogi, C. G. Densmore, S. K. Doorn, J. Am. Chem. Soc. (2009) Google Scholar
- 112.R. Fleurier, J.-S. Lauret, U. Lopez, A. Loiseau, Adv. Funct. Mater. 19, 2219–2223 (2009)Google Scholar
- 113.C.W. Lee, C.-H. Weng, L. Wei, Y. Chen, M.B. Chan-Park, C.-H. Tsai, K.-C. Leou, C.H.P. Poa, J. Wang, L.-J. Li, J. Phys. Chem. C 112, 12089–12091 (2008)Google Scholar
- 114.A.A. Green, M.C. Hersam, Nano Lett. 8, 1417–1422 (2008)Google Scholar
- 115.Y. Miyata, K. Yanagi, Y. Maniwa, H. Kataura, J. Phys. Chem. C 112, 13187–13191 (2008)Google Scholar
- 116.M. Engel, J.P. Small, M. Steiner, M. Freitag, A.A. Green, M.C. Hersam, P. Avouris, ACS Nano 2, 2445–2452 (2008)Google Scholar
- 117.L. Nougaret, H. Happy, G. Dambrine, V. Derycke, J. P. Bourgoin, A. A. Green, M. C. Hersam, Appl. Phys. Lett. 94, 243505/243501–243505/243503 (2009)Google Scholar
- 118.P. Zhao, E. Einarsson, R. Xiang, Y. Murakami, S. Maruyama, J. Phys. Chem. C 114, 4831–4834 (2010)Google Scholar
- 119.Y. Miyauchi, S. Chiashi, Y. Murakami, Y. Hayashida, S. Maruyama, Chem. Phys. Lett. 387, 198–203 (2004)Google Scholar
- 120.E.H. Haroz, W.D. Rice, B.Y. Lu, S. Ghosh, R.H. Hauge, R.B. Weisman, S.K. Doorn, J. Kono, ACS Nano 4, 1955–1962 (2010)Google Scholar
- 121.S. Niyogi, C.G. Densmore, S.K. Doorn, J. Am. Chem. Soc. 131, 1144–1153 (2009)Google Scholar
- 122.K. Moshammer, F. Hennrich, M.M. Kappes, Nano Res. 2, 599–606 (2009)Google Scholar
- 123.S. Ghosh, S.M. Bachilo, R.B. Weisman, Nat. Nanotechnol. 5, 443–450 (2010)Google Scholar
- 124.A. Green, M. Duch, M. Hersam, Nano Res. 2, 69–77 (2009)Google Scholar
- 125.W.-J. Kim, N. Nair, C.Y. Lee, M.S. Strano, J. Phys. Chem. C 112, 7326–7331 (2008)Google Scholar
- 126.J.A. Fagan, M.L. Becker, J. Chun, E.K. Hobbie, Adv. Mater. 20, 1609–1613 (2008)Google Scholar
- 127.J.A. Fagan, M.L. Becker, J. Chun, P. Nie, B.J. Bauer, J.R. Simpson, A. Hight-Walker, E.K. Hobbie, Langmuir 24, 13880–13889 (2008)Google Scholar
- 128.A. Nish, J.-Y. Hwang, J. Doig, R.J. Nicholas, Nat. Nanotechnol. 2, 640–646 (2007)Google Scholar
- 129.F. Chen, B. Wang, Y. Chen, L.-J. Li, Nano Lett. 7, 3013–3017 (2007)Google Scholar
- 130.F. Hennrich, S. Lebedkin, M.M. Kappes, phys. stat. sol. (b) 245, 1951–1953 (2008)Google Scholar
- 131.J.-Y. Hwang, A. Nish, J. Doig, S. Douven, C.-W. Chen, L.-C. Chen, R.J. Nicholas, J. Am. Chem. Soc. 130, 3543–3553 (2008)Google Scholar
- 132.N. Izard, S. Kazaoui, K. Hata, T. Okazaki, T. Saito, S. Iijima, N. Minami, Appl. Phys. Lett. 92, 243112/243111–243112/243113 (2008) Google Scholar
- 133.H. Dodziuk, A. Ejchart, W. Anczewski, H. Ueda, E. Krinichnaya, G. Dolgonos, W. Kutner, Chem. Commun. pp. 986–987 (2003)Google Scholar
- 134.A. Ortiz-Acevedo, H. Xie, V. Zorbas, W.M. Sampson, A.B. Dalton, R.H. Baughman, R.K. Draper, I.H. Musselman, G.R. Dieckmann, J. Am. Chem. Soc. 127, 9512–9517 (2005)Google Scholar
- 135.D. Tasis, K. Papagelis, D. Douroumis, J.R. Smith, N. Bouropoulos, D.G. Fatouros, J. Nanosci. Nanotechnol. 8, 420–423 (2008)Google Scholar
- 136.H. Li, B. Zhou, Y. Lin, L. Gu, W. Wang, K.A.S. Fernando, S. Kumar, L.F. Allard, Y.-P. Sun, J. Am. Chem. Soc. 126, 1014–1015 (2004)Google Scholar
- 137.S.-Y. Ju, J. Doll, I. Sharma, F. Papadimitrakopoulos, Nat. Nanotechnol. 3, 356–362 (2008)Google Scholar
- 138.C.S. Lin, R.Q. Zhang, T.A. Niehaus, T. Frauenheim, J. Phys. Chem. C 111, 4069–4073 (2007)Google Scholar
- 139.S. Niyogi, S. Boukhalfa, S.B. Chikkannanavar, T.J. McDonald, M.J. Heben, S.K. Doorn, J. Am. Chem. Soc. 129, 1898–1899 (2007)Google Scholar
- 140.R.M. Tromp, A. Afzali, M. Freitag, D.B. Mitzi, Z. Chen, Nano Lett. 8, 469–472 (2008)Google Scholar
- 141.R. Marquis, K. Kulikiewicz, S. Lebedkin, M. M. Kappes, C. Mioskowski, S. Meunier, A. Wagner, Chem. Eur. J. 15, 11187–11196, S11187/11181–S11187/11185 (2009)Google Scholar
- 142.J. Zhou, H. Li, J. Lu, G. Luo, L. Lai, R. Qin, L. Wang, S. Nagase, Z. Gao, W. Mei, G. Li, D. Yu, S. Sanvito, Nano Res. 3, 296–306 (2010)Google Scholar
- 143.X. Peng, N. Komatsu, T. Kimura, A. Osuka, ACS Nano 2, 2045–2050 (2008)Google Scholar
- 144.X. Peng, N. Komatsu, T. Kimura, A. Osuka, J. Am. Chem. Soc. 129, 15947–15953 (2007)Google Scholar
- 145.X. Peng, N. Komatsu, S. Bhattacharya, T. Shimawaki, S. Aonuma, T. Kimura, A. Osuka, Nat. Nanotechnol. 2, 361–365 (2007)Google Scholar
- 146.F. Wang, K. Matsuda, A.F.M.M. Rahman, X. Peng, T. Kimura, N. Komatsu, J. Am. Chem. Soc. 132, 10876–10881 (2010)Google Scholar
- 147.S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman, Science 298, 2361–2366 (2002)Google Scholar
- 148.F. Wang, G. Dukovic, L.E. Brus, T.F. Heinz, Science 308, 838–841 (2005)Google Scholar
- 149.C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, S. G. Louie, Phys. Rev. Lett. 92, 077402/077401–077402/077404 (2004)Google Scholar
- 150.J. Deslippe, C.D. Spataru, D. Prendergast, S.G. Louie, Nano Lett. 7, 1626–1630 (2007)Google Scholar
- 151.H. Huang, H. Kajiura, R. Maruyama, K. Kadono, K. Noda, J. Phys. Chem. B 110, 4686–4690 (2006)Google Scholar
- 152.B. Zhao, M.E. Itkis, S. Niyogi, H. Hu, J. Zhang, R.C. Haddon, J. Phys. Chem. B 108, 8136–8141 (2004)Google Scholar
- 153.S.D. Bergin, V. Nicolosi, H. Cathcart, M. Lotya, D. Rickard, Z. Sun, W.J. Blau, J.N. Coleman, J. Phys. Chem. C 112, 972–977 (2008)Google Scholar
- 154.V. Nicolosi, H. Cathcart, A.R. Dalton, D. Aherne, G.R. Dieckmann, J.N. Coleman, Biomacromolecules 9, 598–602 (2008)Google Scholar
- 155.M.E. Itkis, D.E. Perea, S. Niyogi, S.M. Rickard, M.A. Hamon, H. Hu, B. Zhao, R.C. Haddon, Nano Lett. 3, 309–314 (2003)Google Scholar
- 156.B. Zhao, M.E. Itkis, S. Niyogi, H. Hu, D.E. Perea, R.C. Haddon, J. Nanosci. Nanotechnol. 4, 995–1004 (2004)Google Scholar
- 157.M. Jones, C. Engtrakul, W. K. Metzger, R. J. Ellingson, A. J. Nozik, M. J. Heben, G. Rumbles, Phys. Rev. B 71, 115426/115421–115426/115429 (2005)Google Scholar
- 158.A.J. Siitonen, D.A. Tsyboulski, S.M. Bachilo, R.B. Weisman, Nano Lett. 10, 1595–1599 (2010)Google Scholar
- 159.P.H. Tan, A.G. Rozhin, T. Hasan, P. Hu, V. Scardaci, W.I. Milne, A.C. Ferrari, Phys. Rev. Lett. 99, 137402/137401–137402/137404 (2007)Google Scholar
- 160.R.B. Weisman, S.M. Bachilo, Nano Lett. 3, 1235–1238 (2003)Google Scholar
- 161.H. Cathcart, V. Nicolosi, J.M. Hughes, W.J. Blau, J.M. Kelly, S.J. Quinn, J.N. Coleman, J. Am. Chem. Soc. 130, 12734–12744 (2008)Google Scholar
- 162.J.J. Brege, C. Gallaway, A.R. Barron, J. Phys. Chem. C 111, 17812–17820 (2007)Google Scholar
- 163.R. Marquis, C. Greco, I. Sadokierska, S. Lebedkin, M.M. Kappes, T. Michel, L. Alvarez, J.-L. Sauvajol, S. Meunier, C. Mioskowski, Nano Lett. 8, 1830–1835 (2008)Google Scholar
- 164.D.A. Tsyboulski, E.L. Bakota, L.S. Witus, J.-D.R. Rocha, J.D. Hartgerink, R.B. Weisman, J. Am. Chem. Soc. 130, 17134–17140 (2008)Google Scholar
- 165.S.-Y. Ju, W.P. Kopcha, F. Papadimitrakopoulos, Science 323, 1319–1323 (2009)Google Scholar
- 166.J.A. Fagan, J.R. Simpson, B.J. Bauer, S.H. De Paoli Lacerda, M.L. Becker, J. Chun, K.B. Migler, A.R. Hight Walker, E.K. Hobbie, J. Am. Chem. Soc. 129, 10607–10612 (2007)Google Scholar
- 167.R. Graupner, J. Raman Spectrosc. 38, 673–683 (2007)Google Scholar
- 168.L. Alvarez, A. Righi, T. Guillard, S. Rols, E. Anglaret, D. Laplaze, J.L. Sauvajol, Chem. Phys. Lett. 316, 186–190 (2000)Google Scholar
- 169.S.K. Doorn, D.A. Heller, P.W. Barone, M.L. Usrey, M.S. Strano, Appl. Phys. A 78, 1147–1155 (2004)Google Scholar
- 170.H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synth. Met. 103, 2555–2558 (1999)Google Scholar
- 171.M.S. Strano, J. Am. Chem. Soc. 125, 16148–16153 (2003)Google Scholar
- 172.H. Telg, J. Maultzsch, S. Reich, F. Hennrich, C. Thomsen, Phys. Rev. Lett. 93, 177401/177401–177401/177404 (2004)Google Scholar
- 173.J. Maultzsch, H. Telg, S. Reich, C. Thomsen, Phys. Rev. B 72, 205438/205431–205438/205416 (2005)Google Scholar
- 174.A. Jorio, P.T. Araujo, S.K. Doorn, S. Maruyama, H. Chacham, M.A. Pimenta, phys. stat. sol. (b) 243, 3117–3121 (2006)Google Scholar
- 175.J.C. Meyer, M. Paillet, T. Michel, A. Moreac, A. Neumann, G.S. Duesberg, S. Roth, J.-L. Sauvajol, Phys. Rev. Lett. 95, 217401/217401–217401/217404 (2005)Google Scholar
- 176.V.N. Popov, P. Lambin, Phys. Rev. B 73, 085407/085401–085407/085409 (2006)Google Scholar
- 177.O. Dubay, G. Kresse, H. Kuzmany, Phys. Rev. Lett. 88, 235506/235501–235506/235504 (2002)Google Scholar
- 178.A. Jorio, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, A.K. Swan, M. S. Unlu, B. B. Goldberg, M.A. Pimenta, J.H. Hafner, C.M. Lieber, R. Saito, Phys. Rev. B 65, 155412/155411–155412/155419 (2002)Google Scholar
- 179.Z. Luo, F. Papadimitrakopoulos, S.K. Doorn, Phys. Rev. B 75, 205438/205431–205438/205437 (2007)Google Scholar
- 180.L.M. Ericson, P.E. Pehrsson, J. Phys. Chem. B 109, 20276–20280 (2005)Google Scholar
- 181.C. Fantini, A. Jorio, M. Souza, M.S. Strano, M.S. Dresselhaus, M.A. Pimenta, Phys. Rev. Lett. 93, 147406/147401–147406/147404 (2004)Google Scholar
- 182.G. Bar, Y. Thomann, M.H. Whangbo, Langmuir 14, 1219–1226 (1998)Google Scholar
- 183.O.P. Behrend, L. Odoni, J.L. Loubet, N.A. Burnham, Appl. Phys. Lett. 75, 2551–2553 (1999)Google Scholar
- 184.M.R. Falvo, G.J. Clary, R.M. Taylor 2nd, V. Chi, F.P. Brooks Jr, S. Washburn, R. Superfine, Nature 389, 582–584 (1997)Google Scholar
- 185.H. Cathcart, S. Quinn, V. Nicolosi, J.M. Kelly, W.J. Blau, J.N. Coleman, J. Phys. Chem. C 111, 66–74 (2007)Google Scholar
- 186.J. Amiran, V. Nicolosi, S.D. Bergin, U. Khan, P.E. Lyons, J.N. Coleman, J. Phys. Chem. C 112, 3519–3524 (2008)Google Scholar
- 187.H. Cathcart, J.N. Coleman, Chem. Phys. Lett. 474, 122–126 (2009)Google Scholar
- 188.X. Huang, R.S. McLean, M. Zheng, Anal. Chem. 77, 6225–6228 (2005)Google Scholar
- 189.H.-J. Butt, K. Graf, M. Kappl, Physics and Chemistry of Interfaces (Wiley, Weinheim, 2006)Google Scholar
- 190.B. White, S. Banerjee, S. O’Brien, N.J. Turro, I.P. Herman, J. Phys. Chem. C 111, 13684–13690 (2007)Google Scholar
- 191.F. Durst, A. Melling, J.H. Whitelaw, Principles and Practice of Laser Doppler Anemometry (Academic, London, 1976)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2012