• Claudia Backes
Part of the Springer Theses book series (Springer Theses)


Carbon nanotubes (CNTs) belong to the family of synthetic carbon allotropes and are characterized by a network of sp2 hybridized carbon atoms. The one dimensional (1D) carbon nanotubes can thus be queued between their zero dimensional relatives fullerenes and the two dimensional (2D) relative graphene. The structure of nanotubes has first been described as helical microtubules of graphitic carbon in 1991 by Iijima who generated the novel material by an arc discharge evaporation process originally designed for the production of fullerenes. Since then, extensive research has shed light into the structure and properties of this highly remarkable carbon allotrope.


Sodium Dodecyl Sulfate Zeta Potential Sodium Dodecyl Benzene Sulfonate Density Gradient Ultracentrifugation Chiral Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Iijima, Nature 354, 56–58 (1991)Google Scholar
  2. 2.
    A. Hirsch, Angew. Chem. Int. Ed. 41, 1853–1859 (2002)Google Scholar
  3. 3.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318, 162–163 (1985)Google Scholar
  4. 4.
    A. Hirsch, M. Brettreich, Fullerenes–Chemistry and Reations (Wiley, Weinheim, 2005)Google Scholar
  5. 5.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)Google Scholar
  6. 6.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)Google Scholar
  7. 7.
    M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer, Berlin, 2001)Google Scholar
  8. 8.
    K. Tanaka, T. Yamabe, K. Fukui, The Science and Technology of Carbon Nanotubes (Elsevier, Oxford, 1999)Google Scholar
  9. 9.
    M.J. O’Connell (ed.), Carbon Nanotubes: Properties and Applications (CRC Press LLC, Boca Raton, 2006)Google Scholar
  10. 10.
    S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley, Weinheim, 2004)Google Scholar
  11. 11.
    A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Springer, Berlin, 2007)Google Scholar
  12. 12.
    R. Saito, M.S. Dresselhaus, G. Dresselhaus, Physical Properties of Carbon Nanotubes (World Scientific Pub Co, London, 1998)Google Scholar
  13. 13.
    L. Kelly, M. Meyyappan, Carbon Nanotubes: Science and Applications (CRC Press Inc, Boca Raton, 2004)Google Scholar
  14. 14.
    M.S. Dresselhaus, G. Dresselhaus, R. Saito, Phys. Rev. B Condens. Matter 45, 6234–6242 (1992)Google Scholar
  15. 15.
    A. Jung, Dissertation, University of Erlangen-Nürnberg (Erlangen), 2007Google Scholar
  16. 16.
    R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B Condens. Matter 46, 1804–1811 (1992)Google Scholar
  17. 17.
    R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297, 787–792 (2002)Google Scholar
  18. 18.
    P. Avouris, Acc. Chem. Res. 35, 1026–1034 (2002)Google Scholar
  19. 19.
    L. Vaisman, H.D. Wagner, G. Marom, Adv. Colloid Interface Sci. 128–130, 37–46 (2006)Google Scholar
  20. 20.
    N. Grossiord, J. Loos, O. Regev, C.E. Koning, Chem. Mater. 18, 1089–1099 (2006)Google Scholar
  21. 21.
    N. Grobert, Mater. Today 10, 28–35 (2007)Google Scholar
  22. 22.
    L.A. Girifalco, M. Hodak, R.S. Lee, Phys. Rev. B 62, 13104–13110 (2000)Google Scholar
  23. 23.
    S. Nuriel, L. Liu, A.H. Barber, H.D. Wagner, Chem. Phys. Lett. 404, 263–266 (2005)Google Scholar
  24. 24.
    M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley, Science 297, 593–596 (2002)Google Scholar
  25. 25.
    C. Richard, F. Balavoine, P. Schultz, T.W. Ebbesen, C. Mioskowski, Science 300, 775–778 (2003)Google Scholar
  26. 26.
    K. Yurekli, C.A. Mitchell, R. Krishnamoorti, J. Am. Chem. Soc. 126, 9902–9903 (2004)Google Scholar
  27. 27.
    M.S. Strano, V.C. Moore, M.K. Miller, M.J. Allen, E.H. Haroz, C. Kittrell, R.H. Hauge, R.E. Smalley, J. Nanosci. Nanotechnol. 3, 81–86 (2003)Google Scholar
  28. 28.
    M.F. Islam, E. Rojas, D.M. Bergey, A.T. Johnson, A.G. Yodh, Nano Lett. 3, 269–273 (2003)Google Scholar
  29. 29.
    W. Wenseleers, I.I. Vlasov, E. Goovaerts, E.D. Obraztsova, A.S. Lobach, A. Bouwen, Adv. Funct. Mater. 14, 1105–1112 (2004)Google Scholar
  30. 30.
    O. Matarredona, H. Rhoads, Z. Li, J.H. Harwell, L. Balzano, D.E. Resasco, J. Phys. Chem. B 107, 13357–13367 (2003)Google Scholar
  31. 31.
    T. Okazaki, T. Saito, K. Matsuura, S. Ohshima, M. Yumura, S. Iijima, Nano Lett. 5, 2618–2623 (2005)Google Scholar
  32. 32.
    R. Haggenmueller, S.S. Rahatekar, J.A. Fagan, J. Chun, M.L. Becker, R.R. Naik, T. Krauss, L. Carlson, J.F. Kadla, P.C. Trulove, D.F. Fox, H.C. DeLong, Z. Fang, S.O. Kelley, J.W. Gilman, Langmuir 24, 5070–5078 (2008)Google Scholar
  33. 33.
    L. Jiang, L. Gao, J. Sun, J. Colloid Interface Sci. 260, 89–94 (2003)Google Scholar
  34. 34.
    N.R. Tummala, A. Striolo, ACS Nano 3, 595–602 (2009)Google Scholar
  35. 35.
    Z. Sun, V. Nicolosi, D. Rickard, S.D. Bergin, D. Aherne, J.N. Coleman, J. Phys. Chem. C 112, 10692–10699 (2008)Google Scholar
  36. 36.
    A. Ishibashi, N. Nakashima, Bull. Chem. Soc. Jpn. 79, 357–359 (2006)Google Scholar
  37. 37.
    A. Ishibashi, N. Nakashima, Chem. Eur. J. 12, 7595–7602 (2006)Google Scholar
  38. 38.
    V.C. Moore, M.S. Strano, E.H. Haroz, R.H. Hauge, R.E. Smalley, J. Schmidt, Y. Talmon, Nano Lett. 3, 1379–1382 (2003)Google Scholar
  39. 39.
    N. Grossiord, O. Regev, J. Loos, J. Meuldijk, C.E. Koning, Anal. Chem. 77, 5135–5139 (2005)Google Scholar
  40. 40.
    B.R. Priya, H.J. Byrne, J. Phys. Chem. C 112, 332–337 (2008)Google Scholar
  41. 41.
    J.-Y. Shin, T. Premkumar, K.E. Geckeler, Chem. Eur. J. 14, 6044–6048 (2008)Google Scholar
  42. 42.
    S. Utsumi, M. Kanamaru, H. Honda, H. Kanoh, H. Tanaka, T. Ohkubo, H. Sakai, M. Abe, K. Kaneko, J. Colloid Interface Sci. 308, 276–284 (2007)Google Scholar
  43. 43.
    N. Nakashima, Y. Tomonari, H. Murakami, Chem. Lett. pp. 638–639, (2002) Google Scholar
  44. 44.
    Y. Tomonari, H. Murakami, N. Nakashima, Chem. Eur. J. 12, 4027–4034 (2006)Google Scholar
  45. 45.
    T. Fujigaya, N. Nakashima, Polym. J. 40, 577–589 (2008)Google Scholar
  46. 46.
    H. Paloniemi, T. Aeaeritalo, T. Laiho, H. Liuke, N. Kocharova, K. Haapakka, F. Terzi, R. Seeber, J. Lukkari, J. Phys. Chem. B 109, 8634–8642 (2005)Google Scholar
  47. 47.
    J. Chen, C.P. Collier, J. Phys. Chem. B 109, 7605–7609 (2005)Google Scholar
  48. 48.
    D.M. Guldi, G.M.A. Rahman, N. Jux, N. Tagmatarchis, M. Prato, Angew. Chem. Int. Ed. 43, 5526–5530 (2004)Google Scholar
  49. 49.
    D.M. Guldi, G.N.A. Rahman, J. Ramey, M. Marcaccio, D. Paolucci, F. Paolucci, S. Qin, W.T. Ford, D. Balbinot, N. Jux, N. Tagmatarchis, M. Prato, Chem. Commun. pp. 2034–2035, (2004) Google Scholar
  50. 50.
    Y.-L. Zhao, J.F. Stoddart, Acc. Chem. Res. 42, 1161–1171 (2009)Google Scholar
  51. 51.
    M.R. Diehl, S.N. Yaliraki, R.A. Beckman, M. Barahona, J.R. Heath, Angew. Chem. Int. Ed. 41, 353–356 (2002)Google Scholar
  52. 52.
    J. L. Bahr, E. T. Mickelson, M. J. Bronikowski, R. E. Smalley, J. M. Tour, Chem. Commun. pp. 193–194 (2001)Google Scholar
  53. 53.
    S. Niyogi, M.A. Hamon, D.E. Perea, C.B. Kang, B. Zhao, S.K. Pal, A.E. Wyant, M.E. Itkis, R.C. Haddon, J. Phys. Chem. B 107, 8799–8804 (2003)Google Scholar
  54. 54.
    D.S. Kim, D. Nepal, K.E. Geckeler, Small 1, 1117–1124 (2005)Google Scholar
  55. 55.
    S.B. Fagan, A.G. Souza Filho, J.O.G. Lima, J. Mendes Filho, O.P. Ferreira, I.O. Mazali, O.L. Alves, M.S. Dresselhaus, Nano Lett. 4, 1285–1288 (2004)Google Scholar
  56. 56.
    K.D. Ausman, R. Piner, O. Lourie, R.S. Ruoff, M. Korobov, J. Phys. Chem. B 104, 8911–8915 (2000)Google Scholar
  57. 57.
    B.J. Landi, H.J. Ruf, J.J. Worman, R.P. Raffaelle, J. Phys. Chem. B 108, 17089–17095 (2004)Google Scholar
  58. 58.
    J. Liu, M.J. Casavant, M. Cox, D.A. Walters, P. Boul, W. Lu, A.J. Rimberg, K.A. Smith, D.T. Colbert, R.E. Smalley, Chem. Phys. Lett. 303, 125–129 (1999)Google Scholar
  59. 59.
    C.A. Furtado, U.J. Kim, H.R. Gutierrez, L. Pan, E.C. Dickey, P.C. Eklund, J. Am. Chem. Soc. 126, 6095–6105 (2004)Google Scholar
  60. 60.
    J. Wang, W.J. Blau, J. Phys. Chem. C 112, 2298–2303 (2008)Google Scholar
  61. 61.
    Q. Cheng, S. Debnath, E. Gregan, H.J. Byrne, J. Phys. Chem. C 112, 20154–20158 (2008)Google Scholar
  62. 62.
    J.N. Coleman, Adv. Funct. Mater. 19, 3680–3695 (2009)Google Scholar
  63. 63.
    S. Giordani, S.D. Bergin, V. Nicolosi, S. Lebedkin, M.M. Kappes, W.J. Blau, J.N. Coleman, J. Phys. Chem. B 110, 15708–15718 (2006)Google Scholar
  64. 64.
    S.D. Bergin, V. Nicolosi, P.V. Streich, S. Giordani, Z. Sun, A.H. Windle, P. Ryan, N.P.P. Niraj, Z.-T.T. Wang, L. Carpenter, W.J. Blau, J.J. Boland, J.P. Hamilton, J.N. Coleman, Adv. Mater. 20, 1876–1881 (2008)Google Scholar
  65. 65.
    S.D. Bergin, Z. Sun, D. Rickard, P.V. Streich, J.P. Hamilton, J.N. Coleman, ACS Nano 3, 2340–2350 (2009)Google Scholar
  66. 66.
    S.D. Bergin, Z.-Y. Sun, P. Streich, J. Hamilton, J.N. Coleman, J. Phys. Chem. C 114, 231–237 (2010)Google Scholar
  67. 67.
    T.G. Hedderman, S.M. Keogh, G. Chambers, H.J. Byrne, J. Phys. Chem. B 108, 18860–18865 (2004)Google Scholar
  68. 68.
    S.I. Pascu, N. Kuganathan, L.H. Tong, R.M.J. Jacobs, P.J. Barnard, B.T. Chu, Y. Huh, G. Tobias, C.G. Salzmann, J.K.M. Sanders, M.L.H. Green, J.C. Green, J. Mater. Chem. 18, 2781–2788 (2008)Google Scholar
  69. 69.
    H. Murakami, T. Nomura, N. Nakashima, Chem. Phys. Lett. 378, 481–485 (2003)Google Scholar
  70. 70.
    A. Ikeda, Y. Tanaka, K. Nobusawa, J.-I. Kikuchi, Langmuir 23, 10913–10915 (2007)Google Scholar
  71. 71.
    K. Nobusawa, A. Ikeda, J.-i. Kikuchi, S.-i. Kawano, N. Fujita, S. Shinkai, Angew. Chem. Int. Ed. 47, 4577–4580 (2008)Google Scholar
  72. 72.
    K.K. Kim, S.-M. Yoon, J.-Y. Choi, J. Lee, B.-K. Kim, J.M. Kim, J.-H. Lee, U. Paik, M.H. Park, C.W. Yang, K.H. An, Y. Chung, Y.H. Lee, Adv. Funct. Mater. 17, 1775–1783 (2007)Google Scholar
  73. 73.
    A. Mateo-Alonso, C. Ehli, K.H. Chen, D.M. Guldi, M. Prato, J. Phys. Chem. A 111, 12669–12673 (2007)Google Scholar
  74. 74.
    J.-H. Lee, S.-M. Yoon, K.K. Kim, I.-S. Cha, Y.J. Park, J.-Y. Choi, Y.H. Lee, U. Paik, J. Phys. Chem. C 112, 15267–15273 (2008)Google Scholar
  75. 75.
    N. Nakashima, S. Okuzono, H. Murakami, T. Nakai, K. Yoshikawa, Chem. Lett. 32, 456–457 (2003)Google Scholar
  76. 76.
    M. Zheng, A. Jagota, E.D. Semke, B.A. Diner, R.S. McLean, S.R. Lustig, R.E. Richardson, N.G. Tassi, Nat. Mater. 2, 338–342 (2003)Google Scholar
  77. 77.
    X. Tu, M. Zheng, Nano Res. 1, 185–194 (2008)Google Scholar
  78. 78.
    F. Balavoine, P. Schultz, C. Richard, V. Mallouh, T.W. Ebbesen, C. Mioskowski, Angew. Chem. Int. Ed. 38, 1912–1915 (1999)Google Scholar
  79. 79.
    R. Bandyopadhyaya, E. Nativ-Roth, O. Regev, R. Yerushalmi-Rozen, Nano Lett. 2, 25–28 (2002)Google Scholar
  80. 80.
    G.R. Dieckmann, A.B. Dalton, P.A. Johnson, J. Razal, J. Chen, G.M. Giordano, E. Munoz, I.H. Musselman, R.H. Baughman, R.K. Draper, J. Am. Chem. Soc. 125, 1770–1777 (2003)Google Scholar
  81. 81.
    M.S. Arnold, M.O. Guler, M.C. Hersam, S.I. Stupp, Langmuir 21, 4705–4709 (2005)Google Scholar
  82. 82.
    D.B. Romero, M. Carrard, W. De Heer, L. Zuppiroli, Adv. Mater. 8, 899–902 (1996)Google Scholar
  83. 83.
    N. Nakashima, T. Fujigaya, Chem. Lett. 36, 692–697 (2007)Google Scholar
  84. 84.
    D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 106, 1105–1136 (2006)Google Scholar
  85. 85.
    A. Hirsch, O. Vostrowsky, Top. Curr. Chem. 245, 193–237 (2005)Google Scholar
  86. 86.
    M.C. Hersam, Nat. Nanotechnol. 3, 387–394 (2008)Google Scholar
  87. 87.
    R. Krupke, F. Hennrich, Adv. Eng. Mater. 7, 111–116 (2005)Google Scholar
  88. 88.
    S. Banerjee, T. Hemraj-Benny, S.S. Wong, J. Nanosci. Nanotechnol. 5, 841–855 (2005)Google Scholar
  89. 89.
    R. Krupke, F. Hennrich, v. Lohneysen Hilbert, M. Kappes, Science 301, 344–347, (2003)Google Scholar
  90. 90.
    L.X. Benedict, S.G. Louie, M.L. Cohen, Phys. Rev. B: Condens. Matter 52, 8541–8549 (1995)Google Scholar
  91. 91.
    N. Mureau, E. Mendoza, S.R.P. Silva, K.F. Hoettges, M.P. Hughes, Appl. Phys. Lett. 88, 243109/243101–243109/243103, (2006) Google Scholar
  92. 92.
    T. Lutz, K.J. Donovan, Carbon 43, 2508–2513 (2005)Google Scholar
  93. 93.
    H. Peng, N.T. Alvarez, C. Kittrell, R.H. Hauge, H.K. Schmidt, J. Am. Chem. Soc. 128, 8396–8397 (2006)Google Scholar
  94. 94.
    X. Tu, S. Manohar, A. Jagota, M. Zheng, Nature 460, 250–253 (2009)Google Scholar
  95. 95.
    T. Tanaka, H. Jin, Y. Miyata, H. Kataura, Appl. Phys. Express, 1, 114001/114001–114001/114003, (2008) Google Scholar
  96. 96.
    T. Tanaka, H. Jin, Y. Miyata, S. Fujii, H. Suga, Y. Naitoh, T. Minari, T. Miyadera, K. Tsukagoshi, H. Kataura, Nano Lett. 9, 1497–1500 (2009)Google Scholar
  97. 97.
    N. Nair, W.-J. Kim, R.D. Braatz, M.S. Strano, Langmuir 24, 1790–1795 (2008)Google Scholar
  98. 98.
    F. Hennrich, K. Arnold, S. Lebedkin, A. Quintilla, W. Wenzel, M.M. Kappes, phys. stat. so. (b) 244, 3896–3900 (2007)Google Scholar
  99. 99.
    M.J. Bronikowski, P.A. Willis, D.T. Colbert, K.A. Smith, R.E. Smalley, J. Vac. Sci. Technol., A 19, 1800–1805 (2001)Google Scholar
  100. 100.
    B. Kitiyanan, W.E. Alvarez, J.H. Harwell, D.E. Resasco, Chem. Phys. Lett. 317, 497–503 (2000)Google Scholar
  101. 101.
    M.S. Arnold, S.I. Stupp, M.C. Hersam, Nano Lett. 5, 713–718 (2005)Google Scholar
  102. 102.
    M.S. Arnold, A.A. Green, J.F. Hulvat, S.I. Stupp, M.C. Hersam, Nat. Nanotechnol. 1, 60–65 (2006)Google Scholar
  103. 103.
    J. Crochet, M. Clemens, T. Hertel, J. Am. Chem. Soc. 129, 8058–8059 (2007)Google Scholar
  104. 104.
    J. Crochet, M. Clemens, T. Hertel, phys. stat. sol. (b) 244, 3964–3968 (2007)Google Scholar
  105. 105.
    Y. Miyata, K. Yanagi, Y. Maniwa, H. Kataura, J. Phys. Chem. C 112, 3591–3596 (2008)Google Scholar
  106. 106.
    L. Wei, B. Wang, T.H. Goh, L.-J. Li, Y. Yang, M.B. Chan-Park, Y. Chen, J. Phys. Chem. B 112, 2771–2774 (2008)Google Scholar
  107. 107.
    K. Yanagi, Y. Miyata, H. Kataura, Appl. Phys. Express 1, 034003/034001–034003/034003 (2008)Google Scholar
  108. 108.
    K. Yanagi, T. Iitsuka, S. Fujii, H. Kataura, J. Phys. Chem. C 112, 18889–18894 (2008)Google Scholar
  109. 109.
    Y. Sato, K. Yanagi, Y. Miyata, K. Suenaga, H. Kataura, S. Iijima, Nano Lett. 8, 3151–3154 (2008)Google Scholar
  110. 110.
    Y. Miyata, K. Yanagi, Y. Maniwa, H. Kataura, Phys. stat. sol. (b) 245, 2233–2238 (2008)Google Scholar
  111. 111.
    S. Niyogi, C. G. Densmore, S. K. Doorn, J. Am. Chem. Soc. (2009) Google Scholar
  112. 112.
    R. Fleurier, J.-S. Lauret, U. Lopez, A. Loiseau, Adv. Funct. Mater. 19, 2219–2223 (2009)Google Scholar
  113. 113.
    C.W. Lee, C.-H. Weng, L. Wei, Y. Chen, M.B. Chan-Park, C.-H. Tsai, K.-C. Leou, C.H.P. Poa, J. Wang, L.-J. Li, J. Phys. Chem. C 112, 12089–12091 (2008)Google Scholar
  114. 114.
    A.A. Green, M.C. Hersam, Nano Lett. 8, 1417–1422 (2008)Google Scholar
  115. 115.
    Y. Miyata, K. Yanagi, Y. Maniwa, H. Kataura, J. Phys. Chem. C 112, 13187–13191 (2008)Google Scholar
  116. 116.
    M. Engel, J.P. Small, M. Steiner, M. Freitag, A.A. Green, M.C. Hersam, P. Avouris, ACS Nano 2, 2445–2452 (2008)Google Scholar
  117. 117.
    L. Nougaret, H. Happy, G. Dambrine, V. Derycke, J. P. Bourgoin, A. A. Green, M. C. Hersam, Appl. Phys. Lett. 94, 243505/243501–243505/243503 (2009)Google Scholar
  118. 118.
    P. Zhao, E. Einarsson, R. Xiang, Y. Murakami, S. Maruyama, J. Phys. Chem. C 114, 4831–4834 (2010)Google Scholar
  119. 119.
    Y. Miyauchi, S. Chiashi, Y. Murakami, Y. Hayashida, S. Maruyama, Chem. Phys. Lett. 387, 198–203 (2004)Google Scholar
  120. 120.
    E.H. Haroz, W.D. Rice, B.Y. Lu, S. Ghosh, R.H. Hauge, R.B. Weisman, S.K. Doorn, J. Kono, ACS Nano 4, 1955–1962 (2010)Google Scholar
  121. 121.
    S. Niyogi, C.G. Densmore, S.K. Doorn, J. Am. Chem. Soc. 131, 1144–1153 (2009)Google Scholar
  122. 122.
    K. Moshammer, F. Hennrich, M.M. Kappes, Nano Res. 2, 599–606 (2009)Google Scholar
  123. 123.
    S. Ghosh, S.M. Bachilo, R.B. Weisman, Nat. Nanotechnol. 5, 443–450 (2010)Google Scholar
  124. 124.
    A. Green, M. Duch, M. Hersam, Nano Res. 2, 69–77 (2009)Google Scholar
  125. 125.
    W.-J. Kim, N. Nair, C.Y. Lee, M.S. Strano, J. Phys. Chem. C 112, 7326–7331 (2008)Google Scholar
  126. 126.
    J.A. Fagan, M.L. Becker, J. Chun, E.K. Hobbie, Adv. Mater. 20, 1609–1613 (2008)Google Scholar
  127. 127.
    J.A. Fagan, M.L. Becker, J. Chun, P. Nie, B.J. Bauer, J.R. Simpson, A. Hight-Walker, E.K. Hobbie, Langmuir 24, 13880–13889 (2008)Google Scholar
  128. 128.
    A. Nish, J.-Y. Hwang, J. Doig, R.J. Nicholas, Nat. Nanotechnol. 2, 640–646 (2007)Google Scholar
  129. 129.
    F. Chen, B. Wang, Y. Chen, L.-J. Li, Nano Lett. 7, 3013–3017 (2007)Google Scholar
  130. 130.
    F. Hennrich, S. Lebedkin, M.M. Kappes, phys. stat. sol. (b) 245, 1951–1953 (2008)Google Scholar
  131. 131.
    J.-Y. Hwang, A. Nish, J. Doig, S. Douven, C.-W. Chen, L.-C. Chen, R.J. Nicholas, J. Am. Chem. Soc. 130, 3543–3553 (2008)Google Scholar
  132. 132.
    N. Izard, S. Kazaoui, K. Hata, T. Okazaki, T. Saito, S. Iijima, N. Minami, Appl. Phys. Lett. 92, 243112/243111–243112/243113 (2008) Google Scholar
  133. 133.
    H. Dodziuk, A. Ejchart, W. Anczewski, H. Ueda, E. Krinichnaya, G. Dolgonos, W. Kutner, Chem. Commun. pp. 986–987 (2003)Google Scholar
  134. 134.
    A. Ortiz-Acevedo, H. Xie, V. Zorbas, W.M. Sampson, A.B. Dalton, R.H. Baughman, R.K. Draper, I.H. Musselman, G.R. Dieckmann, J. Am. Chem. Soc. 127, 9512–9517 (2005)Google Scholar
  135. 135.
    D. Tasis, K. Papagelis, D. Douroumis, J.R. Smith, N. Bouropoulos, D.G. Fatouros, J. Nanosci. Nanotechnol. 8, 420–423 (2008)Google Scholar
  136. 136.
    H. Li, B. Zhou, Y. Lin, L. Gu, W. Wang, K.A.S. Fernando, S. Kumar, L.F. Allard, Y.-P. Sun, J. Am. Chem. Soc. 126, 1014–1015 (2004)Google Scholar
  137. 137.
    S.-Y. Ju, J. Doll, I. Sharma, F. Papadimitrakopoulos, Nat. Nanotechnol. 3, 356–362 (2008)Google Scholar
  138. 138.
    C.S. Lin, R.Q. Zhang, T.A. Niehaus, T. Frauenheim, J. Phys. Chem. C 111, 4069–4073 (2007)Google Scholar
  139. 139.
    S. Niyogi, S. Boukhalfa, S.B. Chikkannanavar, T.J. McDonald, M.J. Heben, S.K. Doorn, J. Am. Chem. Soc. 129, 1898–1899 (2007)Google Scholar
  140. 140.
    R.M. Tromp, A. Afzali, M. Freitag, D.B. Mitzi, Z. Chen, Nano Lett. 8, 469–472 (2008)Google Scholar
  141. 141.
    R. Marquis, K. Kulikiewicz, S. Lebedkin, M. M. Kappes, C. Mioskowski, S. Meunier, A. Wagner, Chem. Eur. J. 15, 11187–11196, S11187/11181–S11187/11185 (2009)Google Scholar
  142. 142.
    J. Zhou, H. Li, J. Lu, G. Luo, L. Lai, R. Qin, L. Wang, S. Nagase, Z. Gao, W. Mei, G. Li, D. Yu, S. Sanvito, Nano Res. 3, 296–306 (2010)Google Scholar
  143. 143.
    X. Peng, N. Komatsu, T. Kimura, A. Osuka, ACS Nano 2, 2045–2050 (2008)Google Scholar
  144. 144.
    X. Peng, N. Komatsu, T. Kimura, A. Osuka, J. Am. Chem. Soc. 129, 15947–15953 (2007)Google Scholar
  145. 145.
    X. Peng, N. Komatsu, S. Bhattacharya, T. Shimawaki, S. Aonuma, T. Kimura, A. Osuka, Nat. Nanotechnol. 2, 361–365 (2007)Google Scholar
  146. 146.
    F. Wang, K. Matsuda, A.F.M.M. Rahman, X. Peng, T. Kimura, N. Komatsu, J. Am. Chem. Soc. 132, 10876–10881 (2010)Google Scholar
  147. 147.
    S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman, Science 298, 2361–2366 (2002)Google Scholar
  148. 148.
    F. Wang, G. Dukovic, L.E. Brus, T.F. Heinz, Science 308, 838–841 (2005)Google Scholar
  149. 149.
    C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, S. G. Louie, Phys. Rev. Lett. 92, 077402/077401–077402/077404 (2004)Google Scholar
  150. 150.
    J. Deslippe, C.D. Spataru, D. Prendergast, S.G. Louie, Nano Lett. 7, 1626–1630 (2007)Google Scholar
  151. 151.
    H. Huang, H. Kajiura, R. Maruyama, K. Kadono, K. Noda, J. Phys. Chem. B 110, 4686–4690 (2006)Google Scholar
  152. 152.
    B. Zhao, M.E. Itkis, S. Niyogi, H. Hu, J. Zhang, R.C. Haddon, J. Phys. Chem. B 108, 8136–8141 (2004)Google Scholar
  153. 153.
    S.D. Bergin, V. Nicolosi, H. Cathcart, M. Lotya, D. Rickard, Z. Sun, W.J. Blau, J.N. Coleman, J. Phys. Chem. C 112, 972–977 (2008)Google Scholar
  154. 154.
    V. Nicolosi, H. Cathcart, A.R. Dalton, D. Aherne, G.R. Dieckmann, J.N. Coleman, Biomacromolecules 9, 598–602 (2008)Google Scholar
  155. 155.
    M.E. Itkis, D.E. Perea, S. Niyogi, S.M. Rickard, M.A. Hamon, H. Hu, B. Zhao, R.C. Haddon, Nano Lett. 3, 309–314 (2003)Google Scholar
  156. 156.
    B. Zhao, M.E. Itkis, S. Niyogi, H. Hu, D.E. Perea, R.C. Haddon, J. Nanosci. Nanotechnol. 4, 995–1004 (2004)Google Scholar
  157. 157.
    M. Jones, C. Engtrakul, W. K. Metzger, R. J. Ellingson, A. J. Nozik, M. J. Heben, G. Rumbles, Phys. Rev. B 71, 115426/115421–115426/115429 (2005)Google Scholar
  158. 158.
    A.J. Siitonen, D.A. Tsyboulski, S.M. Bachilo, R.B. Weisman, Nano Lett. 10, 1595–1599 (2010)Google Scholar
  159. 159.
    P.H. Tan, A.G. Rozhin, T. Hasan, P. Hu, V. Scardaci, W.I. Milne, A.C. Ferrari, Phys. Rev. Lett. 99, 137402/137401–137402/137404 (2007)Google Scholar
  160. 160.
    R.B. Weisman, S.M. Bachilo, Nano Lett. 3, 1235–1238 (2003)Google Scholar
  161. 161.
    H. Cathcart, V. Nicolosi, J.M. Hughes, W.J. Blau, J.M. Kelly, S.J. Quinn, J.N. Coleman, J. Am. Chem. Soc. 130, 12734–12744 (2008)Google Scholar
  162. 162.
    J.J. Brege, C. Gallaway, A.R. Barron, J. Phys. Chem. C 111, 17812–17820 (2007)Google Scholar
  163. 163.
    R. Marquis, C. Greco, I. Sadokierska, S. Lebedkin, M.M. Kappes, T. Michel, L. Alvarez, J.-L. Sauvajol, S. Meunier, C. Mioskowski, Nano Lett. 8, 1830–1835 (2008)Google Scholar
  164. 164.
    D.A. Tsyboulski, E.L. Bakota, L.S. Witus, J.-D.R. Rocha, J.D. Hartgerink, R.B. Weisman, J. Am. Chem. Soc. 130, 17134–17140 (2008)Google Scholar
  165. 165.
    S.-Y. Ju, W.P. Kopcha, F. Papadimitrakopoulos, Science 323, 1319–1323 (2009)Google Scholar
  166. 166.
    J.A. Fagan, J.R. Simpson, B.J. Bauer, S.H. De Paoli Lacerda, M.L. Becker, J. Chun, K.B. Migler, A.R. Hight Walker, E.K. Hobbie, J. Am. Chem. Soc. 129, 10607–10612 (2007)Google Scholar
  167. 167.
    R. Graupner, J. Raman Spectrosc. 38, 673–683 (2007)Google Scholar
  168. 168.
    L. Alvarez, A. Righi, T. Guillard, S. Rols, E. Anglaret, D. Laplaze, J.L. Sauvajol, Chem. Phys. Lett. 316, 186–190 (2000)Google Scholar
  169. 169.
    S.K. Doorn, D.A. Heller, P.W. Barone, M.L. Usrey, M.S. Strano, Appl. Phys. A 78, 1147–1155 (2004)Google Scholar
  170. 170.
    H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synth. Met. 103, 2555–2558 (1999)Google Scholar
  171. 171.
    M.S. Strano, J. Am. Chem. Soc. 125, 16148–16153 (2003)Google Scholar
  172. 172.
    H. Telg, J. Maultzsch, S. Reich, F. Hennrich, C. Thomsen, Phys. Rev. Lett. 93, 177401/177401–177401/177404 (2004)Google Scholar
  173. 173.
    J. Maultzsch, H. Telg, S. Reich, C. Thomsen, Phys. Rev. B 72, 205438/205431–205438/205416 (2005)Google Scholar
  174. 174.
    A. Jorio, P.T. Araujo, S.K. Doorn, S. Maruyama, H. Chacham, M.A. Pimenta, phys. stat. sol. (b) 243, 3117–3121 (2006)Google Scholar
  175. 175.
    J.C. Meyer, M. Paillet, T. Michel, A. Moreac, A. Neumann, G.S. Duesberg, S. Roth, J.-L. Sauvajol, Phys. Rev. Lett. 95, 217401/217401–217401/217404 (2005)Google Scholar
  176. 176.
    V.N. Popov, P. Lambin, Phys. Rev. B 73, 085407/085401–085407/085409 (2006)Google Scholar
  177. 177.
    O. Dubay, G. Kresse, H. Kuzmany, Phys. Rev. Lett. 88, 235506/235501–235506/235504 (2002)Google Scholar
  178. 178.
    A. Jorio, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, A.K. Swan, M. S. Unlu, B. B. Goldberg, M.A. Pimenta, J.H. Hafner, C.M. Lieber, R. Saito, Phys. Rev. B 65, 155412/155411–155412/155419 (2002)Google Scholar
  179. 179.
    Z. Luo, F. Papadimitrakopoulos, S.K. Doorn, Phys. Rev. B 75, 205438/205431–205438/205437 (2007)Google Scholar
  180. 180.
    L.M. Ericson, P.E. Pehrsson, J. Phys. Chem. B 109, 20276–20280 (2005)Google Scholar
  181. 181.
    C. Fantini, A. Jorio, M. Souza, M.S. Strano, M.S. Dresselhaus, M.A. Pimenta, Phys. Rev. Lett. 93, 147406/147401–147406/147404 (2004)Google Scholar
  182. 182.
    G. Bar, Y. Thomann, M.H. Whangbo, Langmuir 14, 1219–1226 (1998)Google Scholar
  183. 183.
    O.P. Behrend, L. Odoni, J.L. Loubet, N.A. Burnham, Appl. Phys. Lett. 75, 2551–2553 (1999)Google Scholar
  184. 184.
    M.R. Falvo, G.J. Clary, R.M. Taylor 2nd, V. Chi, F.P. Brooks Jr, S. Washburn, R. Superfine, Nature 389, 582–584 (1997)Google Scholar
  185. 185.
    H. Cathcart, S. Quinn, V. Nicolosi, J.M. Kelly, W.J. Blau, J.N. Coleman, J. Phys. Chem. C 111, 66–74 (2007)Google Scholar
  186. 186.
    J. Amiran, V. Nicolosi, S.D. Bergin, U. Khan, P.E. Lyons, J.N. Coleman, J. Phys. Chem. C 112, 3519–3524 (2008)Google Scholar
  187. 187.
    H. Cathcart, J.N. Coleman, Chem. Phys. Lett. 474, 122–126 (2009)Google Scholar
  188. 188.
    X. Huang, R.S. McLean, M. Zheng, Anal. Chem. 77, 6225–6228 (2005)Google Scholar
  189. 189.
    H.-J. Butt, K. Graf, M. Kappl, Physics and Chemistry of Interfaces (Wiley, Weinheim, 2006)Google Scholar
  190. 190.
    B. White, S. Banerjee, S. O’Brien, N.J. Turro, I.P. Herman, J. Phys. Chem. C 111, 13684–13690 (2007)Google Scholar
  191. 191.
    F. Durst, A. Melling, J.H. Whitelaw, Principles and Practice of Laser Doppler Anemometry (Academic, London, 1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  1. 1.ZMP-Institute of Advanced Materials and ProcessesUniversität Erlangen-NürnbergFürthGermany

Personalised recommendations