AUTOPIA Program Advances: How to Automate the Traffic?

  • Vicente Milanés
  • Enrique Onieva
  • Joshué Pérez
  • Jorge Villagrá
  • Jorge Godoy
  • Javier Alonso
  • Carlos González
  • Teresa de Pedro
  • Ricardo García
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6928)

Abstract

Road transport fatalities are one of the major causes of death in developed countries, so the investigation in aid systems for vehicles to reduce these figures is nowadays an open field of research. With this final goal, AUTOPIA program has been working from 1996 in the development of aid driving systems and, specifically, in autonomous systems capable of replacing the driver in some specific tasks, reducing so, the dependence on the human driver. In this paper we present some of the most relevant advances achieved using commercial vehicles. To achieve this objective, prototype vehicles have been equipped with capabilities to permit it to act over the actuators of the vehicle autonomously. Several cooperative maneuvers have been developed during last years toward a final goal: an intelligent traffic control system.

Keywords

Fuzzy Controller Intelligent Transportation System Autonomous Vehicle Intelligent Vehicle Advance Driver Assistance System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amditis, A., Pagle, K., Joshi, S., Bekiaris, E.: Driver-vehicle-environment monitoring for on-board driver support systems: Lessons learned from design and implementation. Applied Ergonomics 41(2), 225–235 (2010)CrossRefGoogle Scholar
  2. 2.
    García, R., de Pedro, T.: Modeling a fuzzy coprocessor and its programming language. Mathware and Soft Computing 5, 167–174 (1998)MATHGoogle Scholar
  3. 3.
    García, R., de Pedro, T.: First applications of the orbex coprocessor: Control of unmanned vehicles. Mathware and Soft Computing 7, 265–273 (2000)MATHGoogle Scholar
  4. 4.
    Garcia, R., Fernandez, P., de Pedro, T.: Robot fingers to tune tv amplifiers using fuzzy logic. Fuzzy Sets and Systems 70, 147–153 (1995)CrossRefGoogle Scholar
  5. 5.
    Milanés, V., Godoy, J., Pérez, J., Vinagre, B., González, C., Onieva, E., Alonso, A.: V2I-Based Architecture for Information Exchange among Vehicles. In: 7th Symposium on Intelligent Autonomous Vehicles (2010)Google Scholar
  6. 6.
    Milanés, V., González, C., Naranjo, J.E., Onieva, E., de Pedro, T.: Electro-hydraulic braking system for autonomous vehicles. International Journal of Automotive Technology 11, 1–6 (2010)CrossRefGoogle Scholar
  7. 7.
    Milanés, V., LLorca, D., Vinagre, B., González, C., Sotelo, M.: Clavileño: Evolution of an autonomous car. In: Proc. of 13th International IEEE Conference on Intelligent Transportation Systems, pp. 1129–1134 (September 2010)Google Scholar
  8. 8.
    Milanés, V., Naranjo, J.E., Gonzánez, C., Alonso, J., de Pedro, T.: Autonomous Vehicle based in Cooperative GPS and Inertial Systems. Robotica 26, 627–633 (2008)CrossRefGoogle Scholar
  9. 9.
    Milanés, V., Onieva, E., Pérez, J., de Pedro, T., González, C.: Control de velocidad adaptativo para entornos urbanos congestionados. Revista Iberoamericana de Automática e Informática Industrial 6(4), 66–73 (2009)CrossRefGoogle Scholar
  10. 10.
    Milanés, V., Onieva, E., Vinagre, B., González, C., Pérez, J., Alonso, J.: Sistema de asistencia a la conducción basado en una red de comunicaciones de bajo coste. DYNA 85(3), 245–254 (2010)CrossRefGoogle Scholar
  11. 11.
    Milanés, V., Pérez, J., Onieva, E., González, C.: Controller for urban intersections based on wireless communications and fuzzy logic. IEEE Transactions on Intelligent Transportation Systems 11(1), 243–248 (2010)CrossRefGoogle Scholar
  12. 12.
    Naranjo, J.E., Gonzalez, C., Garcia, R., de Pedro, T.: ACC+Stop&go maneuvers with throttle and brake fuzzy control. IEEE Transactions on Intelligent Transportation Systems 7(2), 213–225 (2006)CrossRefGoogle Scholar
  13. 13.
    Naranjo, J.E., Gonzalez, C., Garcia, R., de Pedro, T., Revuelto, J., Reviejo, J.: Fuzzy logic based lateral control for gps map tracking. In: Proc. IEEE Intelligent Vehicles Symp., pp. 397–400 (2004)Google Scholar
  14. 14.
    Onieva, E., Milanés, V., González, C., de Pedro, T., Perez, J., Alonso, J.: Throttle and brake pedals automation for populated areas. Robotica 28, 509–516 (2010)CrossRefGoogle Scholar
  15. 15.
    Pérez, J., González, C., Milanés, V., Onieva, E., Godoy, J., de Pedro, T.: Modularity, adaptability and evolution in the autopia architecture for control of autonomous vehicles. In: Proc. IEEE International Conference on Mechatronics, ICM 2009, April 14-17, pp. 1–5 (2009)Google Scholar
  16. 16.
    Pérez, J., Seco, F., Milanés, V., Jiménez, A., Díaz, J., de Pedro, T.: An RFID-Based Intelligent Vehicle Speed Controller Using Active Traffic Signals. Sensors 10(6), 5872–5887 (2010)CrossRefGoogle Scholar
  17. 17.
    Shaout, A., Jarrah, M.A.: Cruise control: technology review. Computers & Electrical Engineering 23(4), 259–271 (1997)CrossRefGoogle Scholar
  18. 18.
    Zoghi, H., Hajali, M., Dirin, M., Malekan, K.: Evaluation of passive & active intelligent speed adaption system. In: Proc. 2nd Int Computer and Automation Engineering (ICCAE) Conf., vol. 4, pp. 182–186 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vicente Milanés
    • 1
  • Enrique Onieva
    • 1
  • Joshué Pérez
    • 1
  • Jorge Villagrá
    • 1
  • Jorge Godoy
    • 1
  • Javier Alonso
    • 1
  • Carlos González
    • 1
  • Teresa de Pedro
    • 1
  • Ricardo García
    • 1
  1. 1.AUTOPIA programCenter for Automation and Robotics (CAR)MadridSpain

Personalised recommendations