Revisiting the Computational Practicality of Private Information Retrieval

  • Femi Olumofin
  • Ian Goldberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7035)


Remote servers need search terms from the user to complete retrieval requests. However, keeping the search terms private or confidential without undermining the server’s ability to retrieve the desired information is a problem that private information retrieval (PIR) schemes are designed to address. A study of the computational practicality of PIR by Sion and Carbunar in 2007 concluded that no existing construction is as efficient as the trivial PIR scheme — the server transferring its entire database to the client. While often cited as evidence that PIR is impractical, that paper did not examine multi-server information-theoretic PIR schemes or recent single-server lattice-based PIR schemes. In this paper, we report on a performance analysis of a single-server lattice-based scheme by Aguilar-Melchor and Gaborit, as well as two multi-server information-theoretic PIR schemes by Chor et al. and by Goldberg. Using analytical and experimental techniques, we find the end-to-end response times of these schemes to be one to three orders of magnitude (10–1000 times) smaller than the trivial scheme for realistic computation power and network bandwidth. Our results extend and clarify the conclusions of Sion and Carbunar for multi-server PIR schemes and single-server PIR schemes that do not rely heavily on number theory.


Network Bandwidth Modular Multiplication Database Size Oblivious Transfer Entire Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aguilar Melchor, C., Crespin, B., Gaborit, P., Jolivet, V., Rousseau, P.: High-Speed Private Information Retrieval Computation on GPU. In: SECURWARE 2008, pp. 263–272 (2008)Google Scholar
  2. 2.
    Aguilar-Melchor, C., Gaborit, P.: A Lattice-Based Computationally-Efficient Private Information Retrieval Protocol. In: WEWORC 2007 (July 2007) Google Scholar
  3. 3.
    Asonov, D. (ed.): Querying Databases Privately. LNCS, vol. 3128. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  4. 4.
    Beimel, A., Ishai, Y., Malkin, T.: Reducing the Servers’ Computation in Private Information Retrieval: PIR with Preprocessing. J. Cryptol. 17(2), 125–151 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boneh, D., Kushilevitz, E., Ostrovsky, R., Skeith III, W.E.: Public Key Encryption that Allows PIR Queries. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 50–67. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Cachin, C., Micali, S., Stadler, M.A.: Computationally Private Information Retrieval with Polylogarithmic Communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information Retrieval. In: FOCS 1995: Proceedings of the 36th Annual Symposium on the Foundations of Computer Science, pp. 41–50 (October 1995)Google Scholar
  8. 8.
    Chor, B., Gilboa, N.: Computationally Private Information Retrieval (extended abstract). In: STOC 1997, pp. 304–313 (1997)Google Scholar
  9. 9.
    Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: Design of a Type III Anonymous Remailer Protocol. In: IEEE S&P, pp. 2–15 ( May 2003)Google Scholar
  10. 10.
    Di Crescenzo, G., et al.: Towards Practical Private Information Retrieval. Achieving Practical Private Information Retrieval Panel. In: SecureComm 2006 (August 2006),
  11. 11.
    Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-Generation Onion Router. In: Proceedings of the 13th USENIX Security Symposium (August 2004)Google Scholar
  12. 12.
    Gentry, C., Ramzan, Z.: Single-Database Private Information Retrieval with Constant Communication Rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting Data Privacy in Private Information Retrieval Schemes. In: STOC 1998, pp. 151–160 (1998)Google Scholar
  14. 14.
    Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.L.: Private Queries in Location Based Services: Anonymizers are not Necessary. In: SIGMOD 2008, pp. 121–132 (2008)Google Scholar
  15. 15.
    Goldberg, I.: Percy++ project on SourceForge,
  16. 16.
    Goldberg, I.: Improving the Robustness of Private Information Retrieval. In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 131–148 (2007)Google Scholar
  17. 17.
    GPGPU Team: High-speed PIR computation on GPU on Assembla,
  18. 18.
    Juels, A.: Targeted Advertising... And Privacy Too. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 408–424. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database, computationally-private information retrieval. In: FOCS 1997, p. 364 (1997)Google Scholar
  20. 20.
    Lipmaa, H.: An Oblivious Transfer Protocol with Log-Squared Communication. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 314–328. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Moore, G.E.: Cramming More Components Onto Integrated Circuits. Electronics Magazine 38(8) (1965)Google Scholar
  22. 22.
    National Institute of Standards and Technology: Key Management Guideline (2007),
  23. 23.
    Nielsen, J.: Nielsen’s Law of Internet Bandwidth (April 1988),
  24. 24.
    Olumofin, F., Goldberg, I.: Privacy-Preserving Queries over Relational Databases. In: Atallah, M.J., Hopper, N.J. (eds.) PETS 2010. LNCS, vol. 6205, pp. 75–92. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Olumofin, F., Goldberg, I.: Revisiting the Computational Practicality of Private Information Retrieval. Tech. rep., CACR 2010-17, University of Waterloo (2010),
  26. 26.
    Ookla: Canada and US Source Data,
  27. 27.
    Shamir, A.: How to Share a Secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Sion, R., Carbunar, B.: On the Computational Practicality of Private Information Retrieval. In: NDSS 2007 (2007)Google Scholar
  29. 29.
    Trostle, J., Parrish, A.: Efficient Computationally Private Information Retrieval From Anonymity or Trapdoor Groups. ePrint 2007/392 (2007)Google Scholar
  30. 30.
    Weiss, A.R.: Dhrystone Benchmark: History, Analysis, Scores and Recommendations. EEMBC White Paper (2002)Google Scholar
  31. 31.
    Wieschebrink, C.: Two NP-complete Problems in Coding Theory with an Application in Code Based Cryptography. In: ISIT 2006, pp. 1733–1737 (July 2006)Google Scholar
  32. 32.
    Yoshida, R., Shigetomi, Y.C., Imai, R., The Practicality, H.: of the Keyword Search Using PIR. In: ISITA 2008, pp. 1–6 (December 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Femi Olumofin
    • 1
  • Ian Goldberg
    • 1
  1. 1.Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations