Abstract
This chapter introduces the fuzzy control approach for a dialysis session. Due to the complexity of the human system, the classical control methods, like PID, can fail to reach the target, mainly for what it concerns the stabilization of the system, which can induce sudden and undesired hypotensive collapses. To this purpose, a heuristic strategy based on expert rules, as fuzzy logic control, can help to reach the desired performances, reducing undesired collateral effects and increasing the potentiality of the dialysis session.
Key Terms
- Modeling paradigms
- Fuzzy logic
- MIMO system
- Fuzzy logic controller
- Hemodialysis
- Blood pressure
- Blood volume
- Ultrafiltration rate
- Conductivity
- Plasma refilling
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Agarwal, R., Weir, M.R.: Dry-weight: a concept revisited in an effort to avoid medication-directed approaches for blood pressure control in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 5(7), 1255–1260 (2010)
Babuska, R.: Fuzzy Modeling for Control. Kluwer Academic Publishers, Norwell (1998)
Bellazzi, R.C., Siviero, M., Stefanelli, R., et al.: Adaptive drug dosage in long term treatment by using fuzzy controllers and bayesian networks. In: Proceedings of IFAC symposium on Modelling and Control in Biomedical Systems, Galveston, TX, pp. 202–204 (1994)
Castro, J.: Fuzzy logic controllers are universal approximators. IEEE Trans. Systems Man Cybernet. 25(4), 629–635 (1995)
Castro, J., Delgado, M.: Fuzzy Systems with Defuzzification are Universal Approximators. IEEE Trans. on Systems, Man and Cybernetics- Part B: Cybernet 26(1), 149–152 (1996)
Coletti, G., Scozzafava, R.: Conditional probability, fuzzy sets, and possibility: a unifying view. Fuzzy Sets and Systems 144(1), 227–249 (2004)
Churchill, D.N.: Sodium and water profiling in chronic uremia. Nephrol Dial Transplant. 11(suppl. 8), 38–41 (1996)
Daugirdas, J.T.: Dialysis hypotension: a hemodynamic analysis. Kidney Int. 39(2), 233–246 (1991)
Davenport, A., Cox, C., Thuraisingham, R.: Blood pressure control and symptomatic intradialytic hypotension in diabetic haemodialysis patients: a cross-sectional survey. Nephron. Clin. Pract. 109(2), c65–c71 (2008)
Degani, R., Pacini, G.: Fuzzy classification of electrocardiograms. In: Optimization of Computer ECG Processing. North-Holland Publishing Co., Amsterdam (1980)
Di Filippo, S., Corti, M., Andrulli, S., et al.: Determining the adequacy of sodium balance in hemodialysis using a kinetic model. Blood Purif. 14(6), 431–436 (1996)
Fuller, R.: Introduction to Neuro-Fuzzy Systems. Advances in Soft Computing Series. Springer, Heildelberg (2000)
Giove, S.: Fuzzy control for medicine: state of the Art and New Perspectives. New Trends in Fuzzy Systems, pp. 235–252. World Scientific, Singapore (1998)
Giove, S., Nordio, M., Zorat, A.: An adaptive fuzzy control module for automatic dialysis. In: Proceedings of F.L.A.I., Linz, pp. 146–156 (1993)
Harris, J.: Fuzzy Logic Applications in Engineering Science. Springer, Dordrecht (2006)
Hickstein, H., Stange, J., Roeher, O., et al.: Clinical application of fuzzy-controlled blood pressure stabilization in patients prone to hypotension during hemodialysis. Dial. Transpant. 38(2), 58–64 (2009)
Jang, J.S.R., Sun, C.T.: Neuro-Fuzzy Modeling and Control. Proceedings of IEEE 83(3), 378–406 (1995)
Kageyama, S., Mimura, A., Ito, K., et al.: Blood glucose control by a fuzzy control system. In: Proceedings of the Int. Conf. on Fuzzy logic & Neural Networks, Iizuka, pp. 557–560 (1990)
Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Kluwer Academic Publishers, Netherlands (2000)
Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications, 1st edn. Prentice Hall, Upper Saddle River (1995)
Kreinovich, V., Mouzouris, G.C., Nguyen, H.T.: Fuzzy rule based modeling as a universal approximation tool. In: Nguyen, H.T., Sugeno, M. (eds.) Fuzzy Systems: Modeling and Control, pp. 135–195. Kluwer, Boston (1998)
Linkens, D.A., Shieh, J.S., Peacock, J.E.: Hierarchical fuzzy modeling for monitoring depth of anaesthesia. Fuzzy Sets and Systems 79(1), 43–58 (1996)
Ljung, L.: System Identification: Theory For the User, 2nd edn. PTR Prentice Hall, Upper Saddle River (1999)
Mamdani, E.H., Assilian, S.: An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller. International Journal of Man-Machine Studies 7(1), 1–13 (1975)
Mancini, E., Mambelli, E., Irpinia, M., et al.: Prevention of dialysis hypotension episodes using fuzzy logic control system. Nephrol Dial. Transplant. 22(5), 1420–1427 (2007)
Mitra, S.: Fuzzy MLP based expert system for medical diagnosis. Fuzzy Sets and Systems 65(2-3), 285–296 (1994)
Moller, D.P.F.: Fuzzy logic and its impact for medical applications. In: Proceedings of EUFIT 1993, Aachen (1993)
Nordio, M., Giove, S., Lorenzi, S., et al.: A new approach to blood pressure and blood volume modulation during hemodialysis: an adaptive fuzzy control module. Int. J. Artif. Organs 18(9), 513–517 (1995)
Nordio, M., Giove, S., Silvoni, S.: A decision support system to prevent hypotensive episodes during dialysis. In: Proceedings of EMBEC 1999, Graz (1999)
Pedrycz, W., Gomide, F.: An Introduction to Fuzzy Sets, Analysis and Design. MIT Press, Cambridge (1999)
Ross, T.: Fuzzy Logic with Engineering Applications, 2nd edn. John Wiley & Sons, Ltd, Chichester (2004)
Roy, M.K., Biswas, R.: I-v fuzzy relations and Sanchez’s approach for medical diagnosis. Fuzzy Sets and Systems 47(1), 35–38 (1992)
Santoro, A., Mancini, E., Paolini, F., Zucchelli, P.: Blood volume monitoring and control. Nephrol Dial. Transplant. 11(suppl. 2), 42–47 (1996)
Santoro, A., Mancini, E., Basile, C., et al.: Blood volume controlled hemodialysis in hypotension-prone patients: a randomized, multicenter controlled trial. Kidney Int. 62(3), 1034–1045 (2002)
Schmidt, R., Roeher, O., Hickstein, H., Korth, S.: Prevention of hemodialysis-induced hypotension by biofeedback control of ultrafiltration and infusion. Nephrol. Dial. Transplant. 16(3), 595–603 (2001)
Schneditz, D., Ronco, C., Levin, N.: Temperature control by the blood temperature monitor. Semin Dial. 16(6), 477–482 (2003)
Sterman, J.D.: Business Dynamics: Systems Thinking and Modeling for a Complex World. McGraw-Hill, New York (2000)
Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)
Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, 1st edn. Wiley Interscience, Hoboken (2001)
Terano, T., Asai, K., Sugeno, M.: Applied Fuzzy Systems. Academic Press, Inc., Boston (1994)
Yager, R., Filev, D.: Essentials of Fuzzy Modeling and Control. John Wiley and Sons, NewYork (1994)
Zadeh, L.: Fuzzy sets. Inf. Cont. 8, 338–353 (1965)
Zadeh, L.A.: Outline of a new approach to the analysis of complex system and decision processes. IEEE Transactions on Systems, Man and Cybernetics 1, 28–44 (1973)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Giove, S., Azar, A.T., Nordio, M. (2013). Fuzzy Logic Control for Dialysis Application. In: Azar, A. (eds) Modeling and Control of Dialysis Systems. Studies in Computational Intelligence, vol 405. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27558-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-27558-6_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27557-9
Online ISBN: 978-3-642-27558-6
eBook Packages: EngineeringEngineering (R0)