Skip to main content

Fuzzy Logic Control for Dialysis Application

  • Chapter

Part of the Studies in Computational Intelligence book series (SCI,volume 405)

Abstract

This chapter introduces the fuzzy control approach for a dialysis session. Due to the complexity of the human system, the classical control methods, like PID, can fail to reach the target, mainly for what it concerns the stabilization of the system, which can induce sudden and undesired hypotensive collapses. To this purpose, a heuristic strategy based on expert rules, as fuzzy logic control, can help to reach the desired performances, reducing undesired collateral effects and increasing the potentiality of the dialysis session.

Key Terms

  • Modeling paradigms
  • Fuzzy logic
  • MIMO system
  • Fuzzy logic controller
  • Hemodialysis
  • Blood pressure
  • Blood volume
  • Ultrafiltration rate
  • Conductivity
  • Plasma refilling

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-27558-6_9
  • Chapter length: 42 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-27558-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   379.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal, R., Weir, M.R.: Dry-weight: a concept revisited in an effort to avoid medication-directed approaches for blood pressure control in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 5(7), 1255–1260 (2010)

    CrossRef  Google Scholar 

  • Babuska, R.: Fuzzy Modeling for Control. Kluwer Academic Publishers, Norwell (1998)

    CrossRef  Google Scholar 

  • Bellazzi, R.C., Siviero, M., Stefanelli, R., et al.: Adaptive drug dosage in long term treatment by using fuzzy controllers and bayesian networks. In: Proceedings of IFAC symposium on Modelling and Control in Biomedical Systems, Galveston, TX, pp. 202–204 (1994)

    Google Scholar 

  • Castro, J.: Fuzzy logic controllers are universal approximators. IEEE Trans. Systems Man Cybernet. 25(4), 629–635 (1995)

    CrossRef  Google Scholar 

  • Castro, J., Delgado, M.: Fuzzy Systems with Defuzzification are Universal Approximators. IEEE Trans. on Systems, Man and Cybernetics- Part B: Cybernet 26(1), 149–152 (1996)

    CrossRef  Google Scholar 

  • Coletti, G., Scozzafava, R.: Conditional probability, fuzzy sets, and possibility: a unifying view. Fuzzy Sets and Systems 144(1), 227–249 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Churchill, D.N.: Sodium and water profiling in chronic uremia. Nephrol Dial Transplant. 11(suppl. 8), 38–41 (1996)

    CrossRef  Google Scholar 

  • Daugirdas, J.T.: Dialysis hypotension: a hemodynamic analysis. Kidney Int. 39(2), 233–246 (1991)

    CrossRef  Google Scholar 

  • Davenport, A., Cox, C., Thuraisingham, R.: Blood pressure control and symptomatic intradialytic hypotension in diabetic haemodialysis patients: a cross-sectional survey. Nephron. Clin. Pract. 109(2), c65–c71 (2008)

    CrossRef  Google Scholar 

  • Degani, R., Pacini, G.: Fuzzy classification of electrocardiograms. In: Optimization of Computer ECG Processing. North-Holland Publishing Co., Amsterdam (1980)

    Google Scholar 

  • Di Filippo, S., Corti, M., Andrulli, S., et al.: Determining the adequacy of sodium balance in hemodialysis using a kinetic model. Blood Purif. 14(6), 431–436 (1996)

    CrossRef  Google Scholar 

  • Fuller, R.: Introduction to Neuro-Fuzzy Systems. Advances in Soft Computing Series. Springer, Heildelberg (2000)

    MATH  Google Scholar 

  • Giove, S.: Fuzzy control for medicine: state of the Art and New Perspectives. New Trends in Fuzzy Systems, pp. 235–252. World Scientific, Singapore (1998)

    Google Scholar 

  • Giove, S., Nordio, M., Zorat, A.: An adaptive fuzzy control module for automatic dialysis. In: Proceedings of F.L.A.I., Linz, pp. 146–156 (1993)

    Google Scholar 

  • Harris, J.: Fuzzy Logic Applications in Engineering Science. Springer, Dordrecht (2006)

    Google Scholar 

  • Hickstein, H., Stange, J., Roeher, O., et al.: Clinical application of fuzzy-controlled blood pressure stabilization in patients prone to hypotension during hemodialysis. Dial. Transpant. 38(2), 58–64 (2009)

    CrossRef  Google Scholar 

  • Jang, J.S.R., Sun, C.T.: Neuro-Fuzzy Modeling and Control. Proceedings of IEEE 83(3), 378–406 (1995)

    CrossRef  Google Scholar 

  • Kageyama, S., Mimura, A., Ito, K., et al.: Blood glucose control by a fuzzy control system. In: Proceedings of the Int. Conf. on Fuzzy logic & Neural Networks, Iizuka, pp. 557–560 (1990)

    Google Scholar 

  • Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Kluwer Academic Publishers, Netherlands (2000)

    CrossRef  MATH  Google Scholar 

  • Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications, 1st edn. Prentice Hall, Upper Saddle River (1995)

    MATH  Google Scholar 

  • Kreinovich, V., Mouzouris, G.C., Nguyen, H.T.: Fuzzy rule based modeling as a universal approximation tool. In: Nguyen, H.T., Sugeno, M. (eds.) Fuzzy Systems: Modeling and Control, pp. 135–195. Kluwer, Boston (1998)

    Google Scholar 

  • Linkens, D.A., Shieh, J.S., Peacock, J.E.: Hierarchical fuzzy modeling for monitoring depth of anaesthesia. Fuzzy Sets and Systems 79(1), 43–58 (1996)

    CrossRef  Google Scholar 

  • Ljung, L.: System Identification: Theory For the User, 2nd edn. PTR Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  • Mamdani, E.H., Assilian, S.: An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller. International Journal of Man-Machine Studies 7(1), 1–13 (1975)

    CrossRef  MATH  Google Scholar 

  • Mancini, E., Mambelli, E., Irpinia, M., et al.: Prevention of dialysis hypotension episodes using fuzzy logic control system. Nephrol Dial. Transplant. 22(5), 1420–1427 (2007)

    CrossRef  Google Scholar 

  • Mitra, S.: Fuzzy MLP based expert system for medical diagnosis. Fuzzy Sets and Systems 65(2-3), 285–296 (1994)

    CrossRef  Google Scholar 

  • Moller, D.P.F.: Fuzzy logic and its impact for medical applications. In: Proceedings of EUFIT 1993, Aachen (1993)

    Google Scholar 

  • Nordio, M., Giove, S., Lorenzi, S., et al.: A new approach to blood pressure and blood volume modulation during hemodialysis: an adaptive fuzzy control module. Int. J. Artif. Organs 18(9), 513–517 (1995)

    Google Scholar 

  • Nordio, M., Giove, S., Silvoni, S.: A decision support system to prevent hypotensive episodes during dialysis. In: Proceedings of EMBEC 1999, Graz (1999)

    Google Scholar 

  • Pedrycz, W., Gomide, F.: An Introduction to Fuzzy Sets, Analysis and Design. MIT Press, Cambridge (1999)

    Google Scholar 

  • Ross, T.: Fuzzy Logic with Engineering Applications, 2nd edn. John Wiley & Sons, Ltd, Chichester (2004)

    MATH  Google Scholar 

  • Roy, M.K., Biswas, R.: I-v fuzzy relations and Sanchez’s approach for medical diagnosis. Fuzzy Sets and Systems 47(1), 35–38 (1992)

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Santoro, A., Mancini, E., Paolini, F., Zucchelli, P.: Blood volume monitoring and control. Nephrol Dial. Transplant. 11(suppl. 2), 42–47 (1996)

    CrossRef  Google Scholar 

  • Santoro, A., Mancini, E., Basile, C., et al.: Blood volume controlled hemodialysis in hypotension-prone patients: a randomized, multicenter controlled trial. Kidney Int. 62(3), 1034–1045 (2002)

    CrossRef  Google Scholar 

  • Schmidt, R., Roeher, O., Hickstein, H., Korth, S.: Prevention of hemodialysis-induced hypotension by biofeedback control of ultrafiltration and infusion. Nephrol. Dial. Transplant. 16(3), 595–603 (2001)

    CrossRef  Google Scholar 

  • Schneditz, D., Ronco, C., Levin, N.: Temperature control by the blood temperature monitor. Semin Dial. 16(6), 477–482 (2003)

    CrossRef  Google Scholar 

  • Sterman, J.D.: Business Dynamics: Systems Thinking and Modeling for a Complex World. McGraw-Hill, New York (2000)

    Google Scholar 

  • Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    CrossRef  MATH  Google Scholar 

  • Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, 1st edn. Wiley Interscience, Hoboken (2001)

    CrossRef  Google Scholar 

  • Terano, T., Asai, K., Sugeno, M.: Applied Fuzzy Systems. Academic Press, Inc., Boston (1994)

    Google Scholar 

  • Yager, R., Filev, D.: Essentials of Fuzzy Modeling and Control. John Wiley and Sons, NewYork (1994)

    Google Scholar 

  • Zadeh, L.: Fuzzy sets. Inf. Cont. 8, 338–353 (1965)

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Zadeh, L.A.: Outline of a new approach to the analysis of complex system and decision processes. IEEE Transactions on Systems, Man and Cybernetics 1, 28–44 (1973)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Giove .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giove, S., Azar, A.T., Nordio, M. (2013). Fuzzy Logic Control for Dialysis Application. In: Azar, A. (eds) Modeling and Control of Dialysis Systems. Studies in Computational Intelligence, vol 405. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27558-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27558-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27557-9

  • Online ISBN: 978-3-642-27558-6

  • eBook Packages: EngineeringEngineering (R0)