Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 405))

Abstract

System dynamics (SD) is a powerful simulation method that is ideal for modeling human processes, as well as many processes that occur within the healthcare system. The SD approach has been used and validated extensively in a wide array of fields and industries. This chapter will provide an overview of the SD modeling and simulation methodology as well as provide more detailed steps related to building and validating SD models. Finally, this chapter will show a specific set of SD models related to dialysis, Kidney and Transplant Patients, Hypertension Patient Flow, and Organ Donation and Transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, D.F., Morecroft, J., Spencer, R.: How the System Dynamics Society came to be: a collective memoir. System Dynamics Review 23(2-3), 219–227 (2007)

    Article  Google Scholar 

  • Azar, A., Mohamed Abdalla, S.A., Wahba, K.: Analyzing the Dynamic Implications For Improving Hemodialysis Session Performance By System Dynamics Approach. In: 24th International Conference of the System Dynamics Society, Nijmegen, Netherlands, July 23-27 (2006)

    Google Scholar 

  • Azar, A.T.: A Novel System for Hemodialysis Efficiency Monitoring. Int. J. Healthcare Technology and Management (IJHTM) 12(2), 132–167 (2011)

    Article  Google Scholar 

  • Balci, O.: Principles and Techniques of Simulation Validation, Verification, and Testing. In: Proceedings of the 27th Conference on Winter Simulation, pp. 147–154. ACM Press (1995)

    Google Scholar 

  • Binder, T., Vox, A., Belyazid, S., et al.: Developing system dynamics models from causal loop diagrams. In: Proc. of the 22nd International Conference of the System Dynamics Society, Oxford, England, July 25-29 (2004)

    Google Scholar 

  • Blanchard, B.S., Fabrycky, W.J.: Systems Engineering and Analysis. Prentice-Hall, Upper Saddle River (1998)

    Google Scholar 

  • Doyle, J., Ford, D.: Mental models concepts for system dynamics research. System Dynamics Review 14(1), 3–29 (1998)

    Article  Google Scholar 

  • Ford, A.: Modeling the environment, 2nd edn. Island Press (2009)

    Google Scholar 

  • Forrester, J.W.: Industrial Dynamics. MIT Press, Cambridge (1961)

    Google Scholar 

  • Forrester, J.W.: Urban Dynamics. Pegasus Communications, Waltham (1969)

    Google Scholar 

  • Forrester, J.W.: System dynamics: a personal view of the first fifty years. System Dynamics Review 23(2-3), 345–358 (2007a)

    Article  Google Scholar 

  • Forrester, J.W.: System dynamics—the next fifty years. System Dynamics Review 23(2-3), 359–370 (2007b)

    Article  Google Scholar 

  • Gray, L., Broe, G.A., Duckett, S.J., et al.: Developing a policy simulator at the acute-aged care interface. Australian Health Review 30, 450–457 (2006)

    Article  Google Scholar 

  • Haraldsson, H.V.: Introduction to systems thinking and causal loop diagrams. Technical report, Lund University, Department of Chemical Engineering. Reports in Ecology and Environmental Engineering, pp. 1–49 (2004)

    Google Scholar 

  • Homer, J.B., Hirsch, G.B.: System dynamics modeling for public health: background and opportunities. Am. J. Public Health 96, 452–458 (2006)

    Article  Google Scholar 

  • Hovmand, P.S., O’Sullivan, J.A.: Lessons from an interdisciplinary system dynamics course. System Dynamics Review 24(4), 479–488 (2008)

    Article  Google Scholar 

  • Johnson, L.P.: Mental models. Harvard University Press, Cambridge (1983)

    Google Scholar 

  • Kainz, D., Ossimitz, G.: Can Students learn stock flow thinking? An empirical investigation. In: Proceedings of the 2002 International System Dynamics Conference, System Dynamics Society, Albany (2002)

    Google Scholar 

  • Kim, H.: Toolbox: Guidelines for Drawing Causal Loop Diagrams. The Systems Thinker 3(1), 5–6 (1992)

    Google Scholar 

  • Kirkwood, C.W.: System Dynamics Methods: A Quick Introduction. Arizona State University (1998)

    Google Scholar 

  • Kleijnen, J.P.C.: Validation of Models: Statistical Techniques and Data Availability. In: Farrington, P.A., Nembhard, H.B., Sturrock, D.T., Evans, G.W. (eds.) Proceedings of the 1999 Winter Simulation Conference, pp. 647–654 (1999)

    Google Scholar 

  • Lagnado, D.A., Waldmann, M.R., Hagmayer, Y., Sloman, S.A.: Beyond covariation: cues to causal structure. In: Gopnik, A., Schulz, L. (eds.) Causal Learning, pp. 154–173. Oxford University Press, Oxford (2007)

    Chapter  Google Scholar 

  • Lane, D.C.: The power of the bond between cause and effect. System Dynamics Review 23(2-3), 95–118 (2007)

    Article  Google Scholar 

  • Lane, D.C., Husemann, E.: System dynamics mapping of acute patient flows. Journal of the Operational Research Society 59, 213–224 (2007)

    Article  Google Scholar 

  • Law, A.M., McComas, M.G.: How to Build Valid and Credible Simulation Models. In: Peters, B.A., Smith, J.S., Medeiros, D.J., Rohrer, M.W. (eds.) Proceedings of the 2001 Winter Simulation Conference, pp. 22–29 (2001)

    Google Scholar 

  • Lyneis, D., Stuntz, L.: System dynamics in K-12 education: lessons learned. Creative Learning Exchange Newsletter 17(2), 1–17 (2008)

    Google Scholar 

  • Lyneis, J.P.: Developing a Society Strategy to Promote Growth of the Field. In: Proc. of the 26th International Conference of the System Dynamics Society, Athens, Greece, July 20-24 (2008)

    Google Scholar 

  • Masnick, K., McDonnell, G.: A model linking clinical workforce skill mix planning to health and health care dynamics. Human Resources for Health 8(11), 1–10 (2010)

    Google Scholar 

  • McLeroy, K.: Thinking of Systems. Am. J. Public Health 96(3), 402 (2006)

    Article  Google Scholar 

  • Meadows, D.: A brief and incomplete history of operational gaming in system dynamics. System Dynamics Review 23(2/3), 199–203 (2007)

    Article  Google Scholar 

  • Meadows, D.: Thinking in systems. A primer. Chelsea Green Publishing, White River Jcn (2008)

    Google Scholar 

  • Morecroft, J.: Strategic modelling and business dynamics: a feedback systems approach. John Wiley and Sons, Chichester (2007)

    Google Scholar 

  • Motohashi, Y., Nishi, S.: Prediction of end stage renal disease patient population in Japan by system dynamics model. Int. J. Epidemiol. 20(4), 1032–1036 (1991)

    Article  Google Scholar 

  • Murry, C.J.L., Evans, D.B.: Health Systems Performance Assessment: Debates, Methods and Empiricism. World Health Organisation, Geneva (2003)

    Google Scholar 

  • Karanfil, O., Barlas, Y.: A Dynamic Simulator for the Management of Disorders of the Body Water Homeostasis. Operations Research 56(6), 1474–1492 (2008)

    Article  MATH  Google Scholar 

  • Paich, M., Peck, C., Valant, J.: Pharmaceutical Product Strategy: Using Dynamic Modeling for Effective Brand Planning, 2nd edn. Informa Healthcare, USA (2009)

    Google Scholar 

  • Pala, O., Vennix, J.A.M.: Effect of system dynamics education on systems thinking inventory task performance. System Dynamics Review 21(2), 147–172 (2005)

    Article  Google Scholar 

  • Plate, R.: Assessing individuals’ understanding of nonlinear causal structures in complex systems. System Dynamics Review 26(1), 19–33 (2010)

    Article  Google Scholar 

  • Raia, F.: Students’ understanding of complex dynamic systems. Journal of Geoscience Education 53(3), 297–308 (2005)

    Google Scholar 

  • Randers, J.: Elements of the System Dynamics Method. The MIT Press, Cambridge (1980)

    Google Scholar 

  • Richardson, G.P.: Reflections for the future of system dynamics. J. of the Operational Research Society 50(4), 440–449 (1999)

    MATH  Google Scholar 

  • Richardson, G.P.: Loop polarity, loop dominance, and the concept of dominant polarity. System Dynamics Review 11(1), 67–88 (1995)

    Article  Google Scholar 

  • Richardson, G.P.: Feedback Thought in Social Science and Systems Theory. System Dynamics Review 8(1), 105–107 (1992)

    Article  Google Scholar 

  • Richardson, G.P.: Problems with causal loop diagrams. System Dynamics Review 2(2), 158–170 (1986)

    Article  Google Scholar 

  • Richardson, G.P.: Problems in causal loop diagrams revisited. System Dynamics Review 13(3), 247–252 (1997)

    Article  Google Scholar 

  • Richmond, B.: Systems thinking: critical thinking skills for the 1990s and beyond. System Dynamics Review 9(2), 113–133 (1993)

    Article  Google Scholar 

  • Rouse, W.B., Morris, N.M.: On looking into the black box: Prospects and limits in the search for mental models. Psychological Bulletin 100, 349–363 (1986)

    Article  Google Scholar 

  • Sargent, R.G.: Verification and Validation of Simulation Models. In: Proceedings of the 2009 Winter Simulation Conference, pp. 162–167. IEEE Computer Society Press (2009)

    Google Scholar 

  • Schaffernicht, M., Madariaga, P.: What is learned in system dynamics education: a competency-based representation based upon Bloom’s taxonomy. In: Proc. of the 28th International Conference of the System Dynamics Society, Seoul, Korea, July 25-29 (2010)

    Google Scholar 

  • Shreckengost, R.C.: Dynamic Simulation Models: How Valid Are They (D-4463). In: System Dynamics in Education Project, System Dynamics Group, pp. 1–11. Sloan School of Management, Massachusetts Institute of Technology (1992)

    Google Scholar 

  • Sterman, J.D.: Business Dynamics: Systems Thinking and Modeling for a Complex World. McGraw-Hill, New York (2000)

    Google Scholar 

  • Sterman, J.D.: Learning in and about complex systems. System Dynamics Review 10(2-3), 291–330 (1994)

    Article  Google Scholar 

  • Sweeney, L.B., Sterman, J.D.: Bathtub dynamics: initial results of a systems thinking inventory. System Dynamics Review 16(4), 249–286 (2000)

    Article  Google Scholar 

  • Wolstenholme, E.F.: A patient flow perspective of UK health services: exploring the care for new “intermediate care” initiatives. Sys. Dyn. Rev. 15(3), 253–271 (1999a)

    Article  Google Scholar 

  • Wolstenholme, E.F.: Qualitative vs. quantitative modelling: the evolving balance. J. of the Operational Research Society 50(4), 422–428 (1999b)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoff McDonnell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McDonnell, G., Azar, A.T., White, J.C. (2013). Renal System Dynamics Modeling. In: Azar, A. (eds) Modeling and Control of Dialysis Systems. Studies in Computational Intelligence, vol 405. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27558-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27558-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27557-9

  • Online ISBN: 978-3-642-27558-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics