Design of P-I Power System Stabilizers for Damping Inter-area Oscillation

Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 133)

Abstract

In this paper dynamic stability analysis of power system is investigated considering proportional-integral power system stabilizer (P-I PSS) for two-area power system. Gains of P-I PSS are optimized by minimizing an objective function using genetic algorithm (GA). Participation factor method is used to find out the suitable location of PSS. Analysis reveals that the P-I PSS provides sufficient damping for inter-area oscillations and gives better dynamic performances when compared without PSS. Analysis also reveals that the proposed P-I PSS works satisfactorily following a transitory three-phase fault.

Keywords

P-I PSS Multimachine System Genetic Algorithm (GA) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    DeMello, F.P., Concordia, C.: Concepts of synchronous machine stability as affected by excitation control. IEEE Transactions on power Apparatus and Systems, PAS-88, 316–329 (1969) Google Scholar
  2. 2.
    Kundur, P., Klein, M., Rogers, G.J., Zywno, M.S.: Application of power system stabilizers for enhancement of overall system stability. IEEE Transactions on PowerApparatus and Systems 4(2), 614–626 (1989) Google Scholar
  3. 3.
    Fleming, R.J., Mohan, M.A., Parvatisam, K.: Selection of parameters of stabiliz-ers in multimachine power systems. IEEE Transactions on Power Apparatus and Systems PAS-100(5), 2329–2333 (1981) Google Scholar
  4. 4.
    Lefebre, S.: Tuning of stabilizers in multimachine power systems. IEEE Transactions on Power Systems PAS-102(2), 290–299 (1983) Google Scholar
  5. 5.
    Lim, C.M., Elangovan, S.: A new stabilizer design technique for multima-chine power systems. IEEE Transactions on Power Apparatus and Systems PAS-104(9), 2393–2400 (1985) Google Scholar
  6. 6.
    Zhang, P., Coonick, A.H.: Coordinated synthesis of PSS parameters in multimachine power systems using the method of inequalities applied to genetic algorithms. IEEE Transactions on Power Systems 15(2), 811–816 (2000) Google Scholar
  7. 7.
    Abdel-Magid, Y.L., Abido, M.A., Mantawy, A.H.: Robust tuning of power system stabilizers in multimachine power systems. IEEE Transactions on Power Systems 15(2), 735–740 (2000) Google Scholar
  8. 8.
    Lei, X., Huang, H., Zheng, S.L., Jiang, D.Z., Sun, Z.W.: Global tuning of power system stabilizers in multimachine systems. Electric Power Systems Research 58, 103–110 (2001) Google Scholar
  9. 9.
    Murty, A.S.R., Parameswaran, S., Ramar, K.: Design of decentralized vari-able structure stabilizers for multimachine power system. Electric Power and Energy Systems 18(8), 535–546 (1996) Google Scholar
  10. 10.
    Barrieiros, J.A.L., eSilva, A., Simoes Costa, A.J.A.: A self -tuning generalized predictive power system stabilizer. Electric Power and Energy Systems 20(3), 213–219 (1998) Google Scholar
  11. 11.
    Cheng, S., Zhou, R., Guan, L.: An online self-learning power system stabilizer using a neural network method. IEEE Transactions on power systems 4(2), 926–931 (1997)CrossRefGoogle Scholar
  12. 12.
    Lu, J., Nehrir, M.H., Pierre, D.A.: A fuzzy logic based self tuning power system stabilizer optimized with a genetic algorithm. Electric Power Systems Research 60, 77–83 (2001)CrossRefGoogle Scholar
  13. 13.
    Lakshmi, P., Abdulla Khan, M.: Stability enhancement of a multimachine power system using fuzzy logic based power system stabilizer tuned through genetic algorithm. Electric Power and Energy System 22, 137–145 (2000)CrossRefGoogle Scholar
  14. 14.
    Verghese, G.C., Perez-Arriaga, I.J., Scheweppe, F.C.: Selective Modal Analysis with Applications to Electric Power Systems, Part I and II. IEEE Transactions on Power Apparatus and Systems PAS-101(9), 3117–3134 (1982)CrossRefGoogle Scholar
  15. 15.
    Schultz, W.C., Rideout, V.C.: Control system performance measures: past, present and future. IRE Transactions on Automatic Control AC-6(22), 22–35 (1961)Google Scholar
  16. 16.
    Ogata, K.: Modern Control Engineering, A book, pp. 293–313. Prentice-Hall, Englewood cliffs (1970)Google Scholar
  17. 17.
    Holland, J.H.: Adaptation in Nature and Artificial Systems. University of Michigan Press, AmArrbor (1975)Google Scholar
  18. 18.
    Lin, C.Y., Hajela, P.: Genetic algorithms in optimization problems with discrete and integer design variables. Engineering Optimization 19(4), 309–327 (1992)CrossRefGoogle Scholar
  19. 19.
    Anderson, P.M., Fouad, A.A.: Power System Control and Stability, A book. The Iowa State University Press, USA (1977)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentKalyani Govt. Engg. CollegeKalyaniIndia
  2. 2.Institute of Technology and Marine EngineeringKolkataIndia
  3. 3.Electrical Engineering DepartmentIndian Institute of TechnologyKharagpurIndia

Personalised recommendations