Skip to main content

Performance Comparison of Clustering Methods for Gene Family Data

  • Chapter
Frontiers in Computer Education

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 133))

  • 160 Accesses

Abstract

Clustering gene sequences into families is important for understanding and predicting gene function. Many clustering algorithms and alignment-free similarity measures have been used to analyze gene family. The clustering results can be influenced by the similarity measure and clustering algorithm used. We compare the results from running four commonly used clustering methods, including K-means, single-linkage clustering, complete-linkage clustering and average-linkage clustering, on three alignment-free similarity measures. We try to find out which method should provide the best clustering result based on real-world gene family datasets. Experiment results show that average-linkage clustering with our similarity measure, DMk, performed best.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Demuth, J.P., De Bie, T., Stajich, J.E., Cristianini, N., Hahn, M.: The evolution of mammalian gene families. PLoS One 1, 1–10 (2006)

    Article  Google Scholar 

  2. Kriventseva, E.V.: Classification of proteins by clustering techniques. Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics 6, 1–7 (2005)

    Google Scholar 

  3. Kelarev, A., Kang, B., Steane, D.: Clustering Algorithms for ITS Sequence Data with Alignment Metrics. In: Sattar, A., Kang, B.-h. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1027–1031. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. NCBI for BLASTCLUST, ftp://ftp.ncbi.nlm.nih.gov/blast/executables/release

  5. Chaudhuri, P., Das, S.: SWORDS: A statistical tool for analyzing large DNA sequences. Journal of Biosciences 27(1), 1–6 (2002)

    Article  Google Scholar 

  6. Sperisen, P., Pagni, M.: JACOP: a simple and robust method for the automated classification of protein sequences with modular architecture. BMC Bioinformatics 6, 216 (2005)

    Article  Google Scholar 

  7. Wang, L.S., Jiang, T.: On the complexity of multiple sequence alignment. Journal of Computational Biology 1(4), 337–348 (1994)

    Article  Google Scholar 

  8. Liu, L.B., Ho, Y.K., Yau, S.: Clustering DNA sequences by feature vectors. Molecular Phylogenetics and Evolution 41(1), 64–69 (2006)

    Article  Google Scholar 

  9. Yang, K., Zhang, L.Q.: Performance comparison of gene family clustering methods with expect curated gene family data set in Arabidposis thaliana. Planta 228, 439–447 (2008)

    Article  Google Scholar 

  10. Wei, D., Jiang, Q.: A DNA Sequence Distance Measure Approach for Phylogenetic Tree Construction. In: 5th IEEE International Conference on Bio-Inspired Computing: Theories and Applications, pp. 204–212 (2010)

    Google Scholar 

  11. Tseng, G.C.: Penalized and weighted K-means for clustering with scattered objects and prior information in high-throughput biological data. Bioinformatics 23(7), 2247–2255 (2007)

    Article  Google Scholar 

  12. Dong, G., Pei, J.: Classification, clustering, features and distances of sequence Data. Sequence Data Mining 33, 47–65 (2007)

    Article  Google Scholar 

  13. Sokal, R.R., Rohlf, F.J.: Biometry: The Principles and Practice of Statistics in Biological Research. W. H. Freeman and Company, New York (1995)

    Google Scholar 

  14. Duret, L., Perrière, G., Gouy, M.: HOVERGEN: database and software for comparative analysis of homologous vertebrate genes. In: Letovsky, S. (ed.) Bioinformatics Databases and Systems, pp. 13–29. Kluwer Academic Publishers, Boston (1999)

    Google Scholar 

  15. Larsen, B., Aone, C.: Fast and effective text mining using linear-time document clustering. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 17–22. ACM, San Diego (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Wei, D., Jiang, Q. (2012). Performance Comparison of Clustering Methods for Gene Family Data. In: Sambath, S., Zhu, E. (eds) Frontiers in Computer Education. Advances in Intelligent and Soft Computing, vol 133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27552-4_109

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27552-4_109

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27551-7

  • Online ISBN: 978-3-642-27552-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics