Abstract
The quality of a heuristic optimization algorithm is strongly dependent on its parameter values. Finding the optimal parameter values is a laborious task which requires expertise and knowledge about the algorithm, its parameters and the problem. This paper describes, how the optimization of parameters can be automated by using another optimization algorithm on a meta-level. To demonstrate this, a meta-optimization problem which is algorithm independent and allows any kind of algorithm on the meta- and base-level is implemented for the open source optimization environment HeuristicLab. Experimental results of the optimization of a genetic algorithm for different sets of base-level problems with different complexities are shown.
Keywords
- Genetic Algorithm
- Search Range
- Evolutionary Algo
- Heuristic Optimization Algorithm
- Real Parameter Optimization
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
The work described in this paper was done within the Josef Ressel Centre for Heuristic Optimization Heureka! ( http://heureka.heuristiclab.com/ ) sponsored by the Austrian Research Promotion Agency (FFG).
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Beyer, H.G., Schwefel, H.P.: Evolution strategies - A comprehensive introduction. Natural Computing 1(1), 3–52 (2002)
Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Systems 9, 115–148 (1995)
Deb, K., Goyal, M.: A combined genetic adaptive search (geneas) for engineering design. Computer Science and Informatics 26, 30–45 (1996)
Dumitrescu, D., Lazzerini, B., Jain, L.C., Dumitrescu, A.: Evolutionary Computation. CRC Press, Boca Raton (2000)
Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation (1999)
English, T.M.: Evaluation of evolutionary and genetic optimizers: No free lunch. In: Evolutionary Programming V: Proceedings of the Fifth Annual Conference on Evolutionary Programming, pp. 163–169. MIT Press, Cambridge (1996)
Grefenstette, J.: Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics 16(1), 122–128 (1986)
Griewank, A.O.: Generalized descent for global optimization. Journal of Optimization Theory and Applications 34, 11–39 (1981)
Mercer, R., Sampson, J.: Adaptive search using a reproductive metaplan. Kybernetes 7(3), 215–228 (1978)
Mühlenbein, H., Schlierkamp-Voosen, D.: Predictive models for the breeder genetic algorithm i. continuous parameter optimization. Evolutionary Computation 1(1), 25–49 (1993)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1999)
Pedersen, E.M.H.: Tuning & Simplifying Heuristical Optimization. Ph.D. thesis, University of Southampton (2010)
Schwefel, H.P.P.: Evolution and Optimum Seeking: The Sixth Generation. John Wiley & Sons, Inc., Chichester (1993)
Smit, S.K., Eiben, A.E.: Comparing parameter tuning methods for evolutionary algorithms. In: Proceedings of the Eleventh Conference on Congress on Evolutionary Computation, pp. 399–406 (2009)
Takahashi, M., Kita, H.: A crossover operator using independent component analysis for real-coded genetic algorithms. In: Proceedings of the 2001 Congress on Evolutionary Computation, pp. 643–649 (2001)
Wagner, S.: Heuristic Optimization Software Systems - Modeling of Heuristic Optimization Algorithms in the HeuristicLab Software Environment. Ph.D. thesis, Johannes Kepler University, Linz, Austria (2009)
Wagner, S., Affenzeller, M.: SexualGA: Gender-specific selection for genetic algorithms. In: Proceedings of the 9th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI) 2005, vol. 4, pp. 76–81. International Institute of Informatics and Systemics (2005)
Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)
Wright, A.H.: Genetic algorithms for real parameter optimization. In: Foundations of Genetic Algorithms, pp. 205–218. Morgan Kaufmann, San Francisco (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Neumüller, C., Wagner, S., Kronberger, G., Affenzeller, M. (2012). Parameter Meta-optimization of Metaheuristic Optimization Algorithms. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2011. EUROCAST 2011. Lecture Notes in Computer Science, vol 6927. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27549-4_47
Download citation
DOI: https://doi.org/10.1007/978-3-642-27549-4_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27548-7
Online ISBN: 978-3-642-27549-4
eBook Packages: Computer ScienceComputer Science (R0)