Abstract
In this paper we report on the use of evolutionary algorithms for optimizing the identification of classification models for selected tumor markers. Our goal is to identify mathematical models that can be used for classifying tumor marker values as normal or as elevated; evolutionary algorithms are used for optimizing the parameters for learning classification models. The sets of variables used as well as the parameter settings for concrete modeling methods are optimized using evolution strategies and genetic algorithms. The performance of these algorithms is analyzed as well as the population diversity progress. In the empirical part of this paper we document modeling results achieved for tumor markers CA 125 and CYFRA using a medical data base provided by the Central Laboratory of the General Hospital Linz; empirical tests are executed using HeuristicLab.
The work described in this paper was done within the Josef Ressel Centre for Heuristic Optimization Heureka! (http://heureka.heuristiclab.com/) sponsored by the Austrian Research Promotion Agency (FFG).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Koepke, J.A.: Molecular marker test standardization. Cancer 69, 1578–1581 (1992)
Bitterlich, N., Schneider, J.: Cut-off-independent tumour marker evaluation using ROC approximation. Anticancer Research 27, 4305–4310 (2007)
Alba, E., Jourdan, J.G.N.L., Talbi, E.G.: Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms. IEEE Congress on Evolutionary Computation, 284–290 (2007)
Winkler, S., Affenzeller, M., Kronberger, G., Kommenda, M., Wagner, S., Jacak, W., Stekel, H.: Feature selection in the analysis of tumor marker data using evolutionary algorithms. In: Proceedings of the 7th International Mediterranean and Latin American Modelling Multiconference, pp. 1–6 (2010)
Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming - Modern Concepts and Practical Applications. Chapman & Hall / CRC (2009)
Yin, B.W., Dnistrian, A., Lloyd, K.O.: Ovarian cancer antigen CA125 is encoded by the MUC16 mucin gene. International Journal of Cancer 98, 737–740 (2002)
Osman, N., O’Leary, N., Mulcahy, E., Barrett, N., Wallis, F., Hickey, K., Gupta, R.: Correlation of serum ca125 with stage, grade and survival of patients with epithelial ovarian cancer at a single centre. Irish Medical Journal 101, 245–247 (2008)
Lai, R.S., Chen, C.C., Lee, P.C., Lu, J.Y.: Evaluation of cytokeratin 19 fragment (cyfra 21-1) as a tumor marker in malignant pleural effusion. Japanese Journal of Clinical Oncology 29(199), 421–424
Winkler, S., Affenzeller, M., Jacak, W., Stekel, H.: Classification of tumor marker values using heuristic data mining methods. In: Proceedings of the GECCO 2010 Workshop on Medical Applications of Genetic and Evolutionary Computation, MedGEC 2010 (2010)
Wagner, S.: Heuristic Optimization Software Systems – Modeling of Heuristic Optimization Algorithms in the HeuristicLab Software Environment. PhD thesis, Johannes Kepler University Linz (2009)
Ljung, L.: System Identification – Theory For the User, 2nd edn. PTR Prentice Hall, Upper Saddle River (1999)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Interscience, Hoboken (2000)
Nelles, O.: Nonlinear System Identification. Springer, Heidelberg (2001)
Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), Software, http://www.csie.ntu.edu.tw/~cjlin/libsvm
Schwefel, H.P.: Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie. Birkhäuser Verlag, Basel (1994)
Holland, J.H.: Adaption in Natural and Artifical Systems. University of Michigan Press, Ann Arbor (1975)
Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, vol. 2, pp. 1137–1143. Morgan Kaufmann, San Francisco (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Winkler, S.M. et al. (2012). Analysis of Selected Evolutionary Algorithms in Feature Selection and Parameter Optimization for Data Based Tumor Marker Modeling. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2011. EUROCAST 2011. Lecture Notes in Computer Science, vol 6927. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27549-4_43
Download citation
DOI: https://doi.org/10.1007/978-3-642-27549-4_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27548-7
Online ISBN: 978-3-642-27549-4
eBook Packages: Computer ScienceComputer Science (R0)