Nanodust Measurements by the Cassini Plasma Spectrometer

Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 385)

Abstract

The Cassini Plasma Spectrometer, CAPS, is an instrument aboard the Cassini orbiter primarily designed to detect thermal plasma throughout the Saturn system. The instrument has achieved this goal very successfully, and, as presented here, added to its immensely valuable scientific return by unexpectedly detecting positively and negatively charged nanodust in the upper atmosphere of Saturns largest moon Titan and in the plume of material ejected from the south pole of the icy moon Enceladus. Here, an overview is given of these observations, the sources of these particles, and the implications that their presence has for atmospheric chemistry at Titan, and the moon magnetosphere interaction that takes place at Enceladus.

Keywords

Magnetospheric Plasma Debris Disk Saturn System Plume Material Triboelectric Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The Cassini Plasma Spectrometer team was designed, built, and operated by an international team led at the Southwest Research Institute, San Antonio, Texas (Principal Investigator: F. J. Crary). The author is supported by a UK Science and Technology Facilities Council Advanced Fellowship, and is grateful for useful discussions with C. S. Arridge, A. J. Coates, and A. Wellbrock.

References

  1. Arridge, C. S., Jones, G. H., Crary, F. J., Young, D. T., Kanani, S.: 2010, EPSC Abstracts 5, EPSC2010–691.Google Scholar
  2. Coates, A. J., Crary, F. J., Lewis, G. R., Young, D. T., Waite Jr., J. H., Sittler Jr., E. C.: 2007, Geophys. Res. Lett. 34, L22103.Google Scholar
  3. Coates, A. J., Wellbrock, A., Lewis, G. R., Jones, G. H., Young, D. T., Crary, F. J., Waite Jr., J. H.:2009, Planet. Space Sci. 57, 1866.Google Scholar
  4. Coates, A. J., et al.:2010a, Faraday Disc. 147, 293.Google Scholar
  5. Coates, A. J., et al.: 2010b, Icarus 206, 618.Google Scholar
  6. Crary, F. J., et al.:2009, Planet. Sp. Sci. 57, 1895.Google Scholar
  7. Dougherty, M. K., et al.:2006, Science 311, 1406.Google Scholar
  8. Duff, N., Lacks, D. J.: 2008, J. Electrost. 66, 51.Google Scholar
  9. Farrell, W. M., et al.:2010, Geophys. Res. Lett. 37, L20202.Google Scholar
  10. Gurnett, D. A., et al.: 2004, Sp. Sci. Rev. 114, 395.Google Scholar
  11. Hansen, C. J., et al.: 2006, Science 311, 1422.Google Scholar
  12. Hansen, C. J., et al.: 2008, Nature 456, 477.Google Scholar
  13. Havnes, O., Nsheim, L. I.: 2007, Ann. Geophys. 25623.Google Scholar
  14. Hedman, M. M., et al.: 2009, Icarus 199378.Google Scholar
  15. Horányi, M., Burns, J. A., Hedman, M. M., Jones, G. H., Kempf, S.: 2009, In: Dougherty, M. K., Esposito, L., Krimigis, S. M. (eds.) Saturn from Cassini-Huygens, Springer Verlag, 511.Google Scholar
  16. Jones, G. H., et al.: 2009, Geophys. Res. Lett. 36, L16204.Google Scholar
  17. Jones, G. H., et al.: 2008, Science 319, 1380.Google Scholar
  18. Kempf, S., et al.: 2005, Nature 433, 289.Google Scholar
  19. Kempf, S., et al.: 2006, Planet. Space Sci. 54, 999.Google Scholar
  20. Kempf, S., et al.: 2008, Icarus 193, 420.Google Scholar
  21. Kempf, S., Beckmann, U., Schmidt, J.:2010 Icarus 206446.Google Scholar
  22. Krimigis, S. M., et al.: 2004, Sp. Sci. Rev. 114, 233.Google Scholar
  23. Krüger, H., et al.:1999, Nature 399, 558.Google Scholar
  24. Michael, M., Tripathi, S. N., Arya, P., Coates, A., Wellbrock, A., Young, D. T.: 2011, Planet. Sp. Sci. 59, 880.Google Scholar
  25. Porco, C. C., et al., Science 311, 1393.Google Scholar
  26. Postberg, F., et al., Icarus 193, 438.Google Scholar
  27. Pryor, W., et al.: 2011, Nature 472, 331.Google Scholar
  28. Roussos, E., et al.: 2008, Icarus 193, 455.Google Scholar
  29. Schmidt, J., Brilliantov, N., Spahn, F., Kempf, S.: 2008, Nature 451, 685.Google Scholar
  30. Shafiq, M., Wahlund, J.-E., Morooka, M. W., Kurth, W. S., Farrell, W. M.: 2011, Planet. Sp. Sci. 59, 17.Google Scholar
  31. Simon, S., Saur, J., Kriegel, H., Neubauer, F.M., Motschmann, U., Dougherty, M.K., Influence of negatively charged plume grains and hemisphere coupling currents on the structure of Enceladus’ Alfvén wings: Analytical modeling of Cassini magnetometer observations. Journal of Geophysical Research (Space Physics), 116(A15):4221 2011.Google Scholar
  32. Spahn, F., et al.: 2006, Science 311, 1416.Google Scholar
  33. Spencer, J. R., et al.: 2006, Science 311, 1401.Google Scholar
  34. Spitale, J. N., Porco, C. C.: 2007, Nature 449, 695.Google Scholar
  35. Srama, R., et al.: 2004, Sp. Sci. Rev. 114, 465.Google Scholar
  36. Tiscareno, M. S., Burns, J. A., Cuzzi, J. N., Hedman, M. M.:2010, Geophys. Res. Lett. 37, L14205.Google Scholar
  37. Tokar, R. L., et al.: 2006, Science 311, 1409.Google Scholar
  38. Tokar, R. L., et al.: 2009, Geophys. Res. Lett. 36, L13203.Google Scholar
  39. Verbiscer, A. J., Skrutskie, M. F., Hamilton, D. P.:2009, Nature 4611098.Google Scholar
  40. Waite, J. H., et al.: 2006, Science 311, 1419.Google Scholar
  41. Waite, J. H., et al.: 2007, Science 316, 870.Google Scholar
  42. Young, D. T., et al.: 2004, Sp. Sci. Rev. 114, 1.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Mullard Space Science Laboratory, Department of Space and Climate PhysicsUniversity College LondonSurreyUK
  2. 2.The Centre for Planetary Sciences at UCL/BirkbeckLondonUK

Personalised recommendations