Association of EphrinB2 Gene Polymorphism with Litter Size in Pigs

Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 134)


EphrinB2, a transmembrane ligand for Eph receptor tyrosine kinases, was one of the potential candidate genes for reproductive traits in pigs. In the study, one single nucleotide polymorphism (SNP) locus in Exon 4 of EphrinB2 gene was analyzed to determine whether EphrinB2 influenced total number born (TNB) and number born alive (NBA) in pigs. Association of two diallelic polymorphisms with reproductive traits was assessed in Landrace, Yorkshire and Duroc populations with 1,023 litter records of 485 pigs. The results showed that C allele at EphrinB2 locus seemed to have advantageous effects on litter size. The results in this study demonstrated that EphrinB2 gene was significantly (P < 0.05) associated with litter size in pigs. Further studies were needed to confirm these preliminary researches.


EphrinB2 Pig SNP Litter size 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Linville, R.C., Pomp, D., Johnson, R.K., Rothschild, M.F.: Candidate gene analysis for loci affecting litter size and ovulation rate in swine. Journal of Animal Science 79, 60–67 (2001)Google Scholar
  2. 2.
    Campbell, E.M.G., Nonneman, D., Rohrer, G.A.: Fine mapping a quantitative trait locus affecting ovulation rate in swine on chromosome 8. Journal of Animal Science 81, 1706–1714 (2003)Google Scholar
  3. 3.
    Johnson, R.K., Nielsen, M.K., Casey, D.S.: Responses in ovulation rate, embryonal survival, and litter traits in swine to 14 generations of selection to increase litter size. Journal of Animal Science 77, 541–557 (1999)Google Scholar
  4. 4.
    Rothschild, M., Jacobson, C., Vaske, D., Tuggle, C., Wang, L., Short, T., et al.: The estrogen receptor locus is associated with a major gene influencing litter size in pigs. Proceedings of the National Academy of Sciences 93, 201–205 (1996)CrossRefGoogle Scholar
  5. 5.
    Vincent, A.L., Evans, G., Short, T.H., Southwood, O.I., Plastow, G.S., Tuggle, C.K., et al.: The prolactin receptor gene is associated with increased litter size in pigs, p. 15. University of New England (1998)Google Scholar
  6. 6.
    Rothschild, M.F., Messer, L., Day, A., Wales, R., Short, T., Southwood, O., et al.: Investigation of the retinol-binding protein 4 (RBP4) gene as a candidate gene for increased litter size in pigs. Mammalian Genome 11, 75–77 (2000)CrossRefGoogle Scholar
  7. 7.
    Lin, H.C., Liu, G.F., Wang, A.G., Kong, L.J., Wang, X.F., Fu, J.L.: Effect of polymorphism in the leukemia inhibitory factor gene on litter size in Large White pigs. Molecular Biology Reports 36, 1833–1838 (2009)CrossRefGoogle Scholar
  8. 8.
    Park, K.R., Inoue, T., Ueda, M., Hirano, T., Higuchi, T., Maeda, M., et al.: CD9 is expressed on human endometrial epithelial cells in association with integrins α6, α3 and β1, pp. 252–257. Oxford Univ. Press (2000)Google Scholar
  9. 9.
    Geisert, R.D., Schmitt, R.A.M.: Early embryonic survival in the pig: Can it be improved. J. Anim. Sci. 80, 54–65 (2002)Google Scholar
  10. 10.
    Frisen, J., Holmberg, J., Barbacid, M.: Ephrins and their Eph receptors: multitalented directors of embryonic development. The EMBO Journal 18, 5159–5165 (1999)CrossRefGoogle Scholar
  11. 11.
    Fujiwara, H., Yoshioka, S., Tatsumi, K., Kosaka, K., Satoh, Y., Nishioka, Y., et al.: Human endometrial epithelial cells express ephrin A1: possible interaction between human blastocysts and endometrium via Eph-ephrin system. J. Clin. Endocrinol. Metab. 87, 5801–5807 (2002)CrossRefGoogle Scholar
  12. 12.
    Red-Horse, K., Kapidzic, M., Zhou, Y., Feng, K.T., Singh, H., Fisher, S.J.: EPHB4 regulates chemokine-evoked trophoblast responses: a mechanism for incorporating the human placenta into the maternal circulation. Development 132, 4097–4106 (2005)CrossRefGoogle Scholar
  13. 13.
    Fujii, H., Tatsumi, K., Kosaka, K., Yoshioka, S., Fujiwara, H., Fujii, S.: Eph-ephrin A system regulates murine blastocyst attachment and spreading. Dev. Dyn. 235, 3250–3258 (2006)CrossRefGoogle Scholar
  14. 14.
    Flanagan, J.G., Vanderhaeghen, P.: The ephrins and Eph receptors in neural development. Annual Review of Neuroscience 21, 309–345 (1998)CrossRefGoogle Scholar
  15. 15.
    Committee Eph Nomenclature. Unified nomenclature for Eph family receptors and their ligands, the ephrins. Cell 90, 403–404 (1997)Google Scholar
  16. 16.
    Maekawa, H., Oike, Y., Kanda, S., Ito, Y., Yamada, Y., Kurihara, H., et al.: Ephrin-B2 induces migration of endothelial cells through the phosphatidylinositol-3 kinase pathway and promotes angiogenesis in adult vasculature. Arteriosclerosis, Thrombosis, and Vascular Biology 23, 2008–2014 (2003)CrossRefGoogle Scholar
  17. 17.
    Foo, S.S., Turner, C.J., Adams, S., Compagni, A., Aubyn, D., Kogata, N., et al.: Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124, 161–173 (2006)CrossRefGoogle Scholar
  18. 18.
    Lawson, N.D., Weinstein, B.M.: Arteries and veins: making a difference with zebrafish. Nature Reviews Genetics 3, 674–682 (2002)CrossRefGoogle Scholar
  19. 19.
    le Noble, F., Moyon, D., Pardanaud, L., Yuan, L., Djonov, V., Matthijsen, R., et al.: Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131, 361–375 (2004)CrossRefGoogle Scholar
  20. 20.
    Lamont, R.E., Childs, S.: MAPping out arteries and veins. Science’s STKE, pp. 1–3 (2006), doi:10.1109/SCIS.2007.357670Google Scholar
  21. 21.
    Adams, R.H., Alitalo, K.: Molecular regulation of angiogenesis and lymphangiogenesis. Nature Reviews Molecular Cell Biology 8, 464–478 (2007)CrossRefGoogle Scholar
  22. 22.
    Cowan, C.A., Yokoyama, N., Saxena, A., Chumley, M.J., Silvany, R.E., Baker, L.A., et al.: Ephrin-B2 reverse signaling is required for axon pathfinding and cardiac valve formation but not early vascular development. Developmental Biology 271, 263–271 (2004)CrossRefGoogle Scholar
  23. 23.
    Sambrook, J., Russell, D.W.: Molecular cloning: a laboratory manual. CSHL press (2001)Google Scholar
  24. 24.
    Short, T.H., Rothschild, M.F., Southwood, O.I., McLaren, D.G., De Vries, A., Van der Steen, H., et al.: Effect of the estrogen receptor locus on reproduction and production traits in four commercial pig lines. Journal of Animal Science 75, 3138–3142 (1997)Google Scholar
  25. 25.
    Li, N., Zhao, Y.F., Xiao, L., Zhang, F.J., Chen, Y.Z., Dai, R.J., et al.: Candidate gene approach for identification of genetic loci controlling litter size in swine, p. 183. University of New England (1998)Google Scholar
  26. 26.
    Wu, Y.P., Wang, A.G., Li, N., Fu, J.L., Zhao, X.B.: Association with TGF-β1 Gene Polymorphisms and Reproductive Performance of Large White Pig. Reproduction in Domestic Animals, pp. 1–5 (2009), doi:10.1111/j.1439-0531.2009.01480.xGoogle Scholar
  27. 27.
    Niu, B.Y., Ye, L.Z., Li, F.E., Deng, C.Y., Jiang, S.W., Lei, M.G., et al.: Identification of polymorphism and association analysis with reproductive traits in the porcine RNF4 gene. Animal Reproduction Science 110, 283–292 (2009)CrossRefGoogle Scholar
  28. 28.
    Wang, H.U., Chen, Z.F., Anderson, D.J.: Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–753 (1998)CrossRefGoogle Scholar
  29. 29.
    Wang, H.U., Chen, Z.F., Anderson, D.J.: Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–753 (1998)CrossRefGoogle Scholar
  30. 30.
    Adams, R.H., Wilkinson, G.A., Weiss, C., Diella, F., Gale, N.W., Deutsch, U., et al.: Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes & Development 13, 295–306 (1999)CrossRefGoogle Scholar
  31. 31.
    Gerety, S.S., Wang, H.U., Chen, Z.F., Anderson, D.J.: Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Molecular Cell 4, 403–414 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Yanfeng Fu
    • 1
  • Guiying Wang
    • 1
  • Jinluan Fu
    • 1
  • Aiguo Wang
    • 1
  1. 1.The Key Laboratory of Animal Genetics and Breeding of Ministry of AgricultureCollege of Animal Science and Technology China Agricultural UniversityBeijingChina

Personalised recommendations