Skip to main content

A Cortically Inspired Learning Model

  • Conference paper
  • 839 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 399))

Abstract

We describe a biologically plausible learning model inspired by the structural and functional properties of the cortical columns present in the mammalian neocortex. The strength and robustness of our model is ascribed to its biologically plausible, uniformly structured, and hierarchically distributed processing units with their localized learning rules. By modeling cortical columns rather than individual neurons as our fundamental processing units, we get hierarchical learning networks that are computationally less demanding and better suited for studying higher cortical properties like independent feature detection, plasticity, etc. Another interesting attribute of our model is the use of feedback processing paths to generate invariant representation to robustly recognize variations of the same patterns and to determine the set of features sufficient for recognizing different patterns in the input dataset. We train and test our hierarchical networks using synthetic digit images as well as a subset of handwritten digit images obtained from the MNIST database. Our results show that our cortical networks use unsupervised feedforward processing as well as supervised feedback processing to robustly recognize handwritten digits.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nicholls, J., Martin, A., Wallace, B., Fuchs, F.: From Neuron To Brain. Sinauer Associates Ins., 23 Plumtree Road, Sunderland, MA, USA (2001)

    Google Scholar 

  2. Hawkins, J., Blakeslee, S.: On Intelligence. Henry Holt & Company, Inc. (2005)

    Google Scholar 

  3. Hirsch, J., Martinez, L.: Laminar processing in the visual cortical column. Current Opinion in Neurobiology 16, 377–384 (2006)

    Article  Google Scholar 

  4. Aimone, J., Wiles, J., Gage, F.: Computational influence of adult neurogenesis on memory encoding. Neuron 61, 187–2002 (2009)

    Article  Google Scholar 

  5. Markram, H.: The blue brain project. In: SC 2006: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, vol. 53. ACM, New York (2006)

    Google Scholar 

  6. DARPA: Systems of neuromorphic adaptive plastic scalable electronics (synapse) (2008), http://www.darpa.mil/dso/thrusts/bio/biologically/synapse/

  7. Clopath, C., Longtin, A., Gerstner, W.: An online hebbian learning rule that performs independent component analysis. In: Proceedings of Neural Information Processing Systems (2007)

    Google Scholar 

  8. Martinetz, T.: Competitive hebbian learning rule forms perfectly topology preserving maps. In: International Conference on Artificial Neural Networks, ICANN, pp. 427–434 (1993)

    Google Scholar 

  9. Arthur, J., Boahen, K.: Learning in silicon: Timing is everything. In: Proceedings of Advances in Neural Information Processing Systems. Advances in Neural Information Processing Systems, vol. 18, pp. 75–82 (2006)

    Google Scholar 

  10. Carpenter, G., Grossberg, S., Rosen, D.: Art2-a: An adaptive resonance algorithm for rapid category learning and recognition. Neural Networks 4, 493–504 (1991)

    Article  Google Scholar 

  11. Hawkins, J., George, D.: Hierarchical temporal memory (2006), http://www.numenta.com/numenta_htm_concepts.pdf

  12. George, D., Hawkins, J.: A hierarchical bayesian model of invariant pattern recognition in the visual cortex. In: Proceedings of International Joint Conference on Neural Networks. IEEE International Joint Conference on Neural Network, vol. 3, pp. 1812–1817 (2005)

    Google Scholar 

  13. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mountcastle, V.: An organizing principle for cerebral function: The unit model and the distributed system. In: Edelman, G., Mountcastle, V. (eds.) The Mindful Brain. MIT Press, Cambridge (1978)

    Google Scholar 

  15. Maw, N., Pomplun, M.: Studying human face recognition with the gaze-contingent window technique. In: Proceedings of the Twenty-Sixth Annual Meeting of Cognitive Science Society, pp. 927–932 (2004)

    Google Scholar 

  16. Sigala, N., Logothetis, N.: Visual categorization shapes feature selectivity in the primate temporal cortex. Nature 415, 318–320 (2002)

    Article  Google Scholar 

  17. Lecun, Y., Cortes, C.: The mnist database of handwritten digits (1998), http://yann.lecun.com/exdb/mnist/

  18. Swanson, L.: Mapping the human brain: past, present, and future. Trends in Neurosciences 18, 471–474 (1995)

    Article  Google Scholar 

  19. Mountcastle, V.: The columnar organization of the neocortex. Brain 120, 701–722 (1997)

    Article  Google Scholar 

  20. Mountcastle, V.: Modality and topographic properties of single neurons of cat’s somatic sensory cortex. Journal of Neurophysiology 20, 408–434 (1957)

    Article  Google Scholar 

  21. Hubel, D., Wiesel, T.: Receptive fields, binocular interactions and functional architecture in cat’s visual cortex. Journal of Physiology 160, 106–154 (1962)

    Article  Google Scholar 

  22. Hubel, D., Wiesel, T.: Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology 195, 215–243 (1968)

    Article  Google Scholar 

  23. Peissig, J., Tarr, M.: Visual object recognition: do we know more now than we did 20 years ago? Annu. Rev. Psychol. 58, 75–96 (2007)

    Article  Google Scholar 

  24. Grill-Spector, K., Kushnir, T., Hendler, T., Edelman, S., Itzchak, Y., Malach, R.: A sequence of object-processing stages revealed by fmri in the human occipital lobe. Hum. Brain Map. 6, 316–328 (1998)

    Article  Google Scholar 

  25. Freeman, W.: Random activity at the microscopic neural level in cortex (”noise”) sustains and is regulated by low-dimensional dynamics of macroscopic activity (”chaos”). International Journal of Neural Systems 7, 473–480 (1996)

    Article  Google Scholar 

  26. Rokni, U., Richardson, A., Bizzi, E., Seung, H.: Motor learning with unstable neural representations. Neuron 64, 653–666 (2007)

    Article  Google Scholar 

  27. Seung, H.: Learning in spiking neural networks by reinforcement of stochastic synaptic transmission. Neuron 40, 1063–1073 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atif Hashmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Hashmi, A., Lipasti, M. (2012). A Cortically Inspired Learning Model. In: Madani, K., Dourado Correia, A., Rosa, A., Filipe, J. (eds) Computational Intelligence. IJCCI 2010. Studies in Computational Intelligence, vol 399. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27534-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27534-0_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27533-3

  • Online ISBN: 978-3-642-27534-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics