Skip to main content

Methodology

  • Chapter
  • First Online:
Landslide Analysis and Early Warning Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 1359 Accesses

Abstract

A wide range of methods was applied within this study to investigate and model a landslide in Lichtenstein-Unterhausen, and to develop and implement local and regional scale technical landslide early warning systems as part of an integrated early warning chain. In the following, the methodological approaches of this study are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson MG, Richards K (1987) Modelling slope stability: the complementary nature of geotechnical and geomorphological approaches. In: Anderson MG (ed) Slope stability: geotechnical engineering and geomorphology. Wiley Ltd, Chichester, pp 1–9

    Google Scholar 

  • Anderson MG, Lloyd DM, Park A, Hartshorne J, Hargraves S Othman A (1996) Establishing new design dynamic modelling criteria for tropical cut slopes. In: Senneset K (ed) Landslides. 7th international symposium on landslides, Trondheim, Norway: Balkema, Rotterdam, pp 1067–1072

    Google Scholar 

  • Anderson SA, Thallapally LK (1996) Hydrologic response of a steep tropical slope to heavy rainfall. In: Senneset K (ed) Landslides. 7th international symposium on landslides. Balkema, Trondheim–Rotterdam, Norway, pp 1489–1495

    Google Scholar 

  • Bell R (2007) Lokale Und Regionale Gefahren-Und Risikoanalyse Gravitativer Massenbewegungen an Der Schwäbischen Alb. Dissertation. University of Bonn, Germany

    Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. Dover, New York

    Google Scholar 

  • Bell R, Wiebe H, Krummel H (2010) Vorerkundung. In: Bell R, Pohl J, Glade T, Mayer J, Greiving S (eds) Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS) monitoring, modellierung, implementierung. Klartext, Essen, Germany, pp 62–69

    Google Scholar 

  • Beven KJ (1985) Distributed models. In: Anderson MG, Burt TB (eds) Hydrological forecasting. Wiley, New York, pp 405–435

    Google Scholar 

  • Bishop AW (1955) The use of the slip circle in the stability analysis of slopes. Geotech 5(1):7–17

    Article  Google Scholar 

  • Caine N (1980) The rainfall intensity: duration control of shallow landslides and debris flows. Geografiska Annaler. Series A Phys Geogr 62(1/2):23–27 Available at Accessed 18 Oct 2010

    Article  Google Scholar 

  • Charalambus S (2003) Methodology development for the stability evaluation of natural and man-made slopes against static and seismic loads in a GIS environment. Technical University of Athens, Greece

    Google Scholar 

  • CHASM (2008) CHASM Software—Combined hydrology & slope stability model [Online]. Available at http://chasm.info/ Accessed 14 Feb 2011

  • Chleborad AF (2000) Preliminary method for anticipating the occurrence of precipitation-induced landslides in Seattle, Washington. U.S. Geological Survey Open-File Report 03–463

    Google Scholar 

  • Chleborad AF (2003) Preliminary evaluation of a precipitation threshold for anticipating the occurrence of landslides in the Seattle, Washington, area. Denver, Colorado, US U.S. Deptartment of the Interior, U.S. Geological Survey, Denver, Colorado

    Google Scholar 

  • Chleborad AF, Baum RL, Godt JW (2006) Rainfall thresholds for forecasting landslide in the Seattle. Washington, Area—exceedance and probability. U.S. Geological Survey Open File Report 2006–1064

    Google Scholar 

  • Collison AJC, Anderson MG (1996) Using a combined slope hydrology/stability model to identify suitable conditions for landslide prevention by vegetation in the humid tropics. Earth Surf Proc Land 21(8):737–747

    Article  Google Scholar 

  • Darcy H (1856) Les fontaines publiques de la ville de Dijon. Victor Dalmont, Paris, France

    Google Scholar 

  • Finlay PJ, Mostyn GR, Fell R (1999) Landslide risk assessment: prediction of travel distance. Can Geotech J 36(3):556–562

    Article  Google Scholar 

  • Forchheimer P (1930) Hydraulik. Leipzig and Berlin, Teubner

    Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides 5(1):3–17

    Article  Google Scholar 

  • Jäger S, Paulsen H, Mayer C, Huber B, Dietz R, Greve K, Camek T (2010) Informationstechnik in der Frühwarnmodellierung. In: Bell R, Pohl J, Glade T, Mayer J, Greiving S (eds) Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS) monitoring, modellierung, implementierung. Klartext, Essen, Germany, pp 155–179

    Google Scholar 

  • Janbu N (1954) Application of composite slip surface for stability analysis. In: Proceedings of the European conference on the stability of earth slopes. pp 43–49

    Google Scholar 

  • Kruse JE (2006) Untergrunderkundung und monitoring von gravitativen Massenbewegungen mit Gleichstromgeoelektrik und Radiomagnetotellurik. University of Bonn, Germany

    Google Scholar 

  • Leser H (1982) Erläuterungen zur Geomorphologischen Karte 1:25, 000 der Bundesrepublik Deutschland. GMK 25 Blatt 9 7520 Mössingen Geomorphologische Detailkartierung in der Bundesrepublik Deutschland. Geo Center, Stuttgart, Germany

    Google Scholar 

  • Millington RJ, Quirk JP (1959) Permeability of porous media. Nature 183:387–388

    Article  Google Scholar 

  • Ohmert W, Von Koenigswald W, Münzing K, Villinger E (1988) Erläuterungen zu Blatt 7521 Reutlingen (Geologische Karte 1:25.000 von Baden Württemberg). Geologisches Landesamt Baden-Württemberg

    Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1:318–333

    Article  Google Scholar 

  • Saxton KE, Rawls WJ (2006) Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 5(70):1569–1578

    Article  Google Scholar 

  • Saxton KE, Willey MP (2006) The SPAW model for agricultural field and pond hydrologic simulation. In: Singh VP, Frevert D (eds) Mathematical modeling of watershed hydrology. CRC Press, Boca Raton, pp 401–435

    Google Scholar 

  • Sung CT, Iba J (2010) Accuracy of the Saxton-Rawls method for estimating the soil water characteristics for mineral soils of Malaysia. Pertanika J Trop Agric Sci 33(2):297–302

    Google Scholar 

  • MS U (2007) Bedienungsanleitung T8 Langzeitmonitoring-Tensiometer. UMS GmbH, München

    Google Scholar 

  • Wilkinson PL, Anderson MG, Lloyd DM (2002a) An integrated hydrological model for rain-induced landslide prediction. Earth Surf Proc Land 27(12):1285–1297

    Article  Google Scholar 

  • Wilkinson PL, Anderson MG, Lloyd DM, Renaud JP (2002b) Landslide hazard and bioengineering: towards providing improved decision support through integrated numerical model development. Environ Model Softw 17(4):333–344

    Article  Google Scholar 

  • Wilkinson PL, Brooks SM, Anderson MG (2000) Design and application of an automated non-circular slip surface search within a combined hydrology and stability model (CHASM). Hydrol Process 14(11–12):2003–2017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thiebes, B. (2012). Methodology. In: Landslide Analysis and Early Warning Systems. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27526-5_5

Download citation

Publish with us

Policies and ethics