3D Cameras: Errors, Calibration and Orientation

  • Nobert Pfeifer
  • Derek Lichti
  • Jan Böhm
  • Wilfried Karel


Range cameras integrate different optical measurement techniques that provide coverage of an area. Firstly, they provide images like frame cameras which provide scene information in the form of texture. Secondly, they provide direct range measurement like laser scanners, but do so simultaneously for the entire field of view as opposed to the sequential operation of laser scanners. Above all, they provide image streams like video cameras. For specific measurement and modeling tasks, one observation technology, i.e. either passive imaging or laser scanning, is typically more suited than the other one. The integrated aspects of 3D cameras have therefore triggered a lot of interest despite their relative low resolution and accuracy. The potential to obtain 3D scene information instantly and directly thus caused different groups to investigate the data quality of 3D range cameras, models for calibration and orientation.


Point Cloud Range Error Inertial Measurement Unit Iterative Close Point Terrestrial Laser Scanner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N. Pfeifer, J. Boehm, Early stages of LiDAR data processing, Advances in Photogrammetry, Remote Sensing and Spatial Information Sciences, CRC Press (2008)Google Scholar
  2. 2.
    T. Kahlmann, F. Remondino, H. Ingensand, Calibration for increased accuracy of the range imaging camera SwissRanger. Int. Arch. Photogram. Remote. Sens. Spat. Inf. Sci. Vol. XXXVI, part 5, 136–141 (2006)Google Scholar
  3. 3.
    D. Dröschel, S. May, D. Holz, P. Plöger and S. Behnke, Robust Ego-Motion Estimation with TOF Cameras, Proceedings of the 4th European Conference on Mobile Robots (ECMR), Dubrovnik, Croatia, Sept 2009Google Scholar
  4. 4.
    S. May, D. Droeschel, D. Holz, C. Wiesen and S. Fuchs, 3D Pose Estimation and Mapping with Time-Of-Flight Cameras, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Workshop on 3D Mapping, Nice, France, 2008Google Scholar
  5. 5.
    R. B. Rusu, N. Blodow, M. Beetz, Fast Point Feature Histograms (FPFH) for 3D registration, 2009. ICRA ‘09. IEEE International Conference on Robotics and Automation, pp.3212–3217 (2009)Google Scholar
  6. 6.
    Z. Marton, D. Pangercic, N. Blodow, J. Kleinehellefort, M. Beetz, General 3D modelling of novel objects from a single view, 2010 IEEE/RSJ International Conference on , Intelligent Robots and Systems (IROS), pp. 3700–3705, 18–22 Oct 2010Google Scholar
  7. 7.
    P.J. Besl, N.D. McKay, A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)CrossRefGoogle Scholar
  8. 8.
    D.W. Eggert, A.W. Fitzgibbon, R.B. Fisher, Simultaneous Registration of Multiple Range Views for Use in Reverse Engineering of CAD Models. Comput. Vis. Image Underst. 69(3), 253–272 (1998)CrossRefGoogle Scholar
  9. 9.
    S. Rusinkiewicz and M. Levoy, Efficient variants of the ICP algorithm, Proceedings of the Third Intl. Conf. on 3D Digital Imaging and Modeling, pp. 142–152, 2001Google Scholar
  10. 10.
    ISO/IEC Guide 98-1, Uncertainty of measurementPart 1: Introduction to the expression of uncertainty in measurement (Geneva, Switzerland, 2009)Google Scholar
  11. 11.
    M. Reynolds, J. Doboš, L. Peel, T. Weyrich, G.J. Brostow, Capturing Time-Of-Flight Data with Confidence, CVPR (2011)Google Scholar
  12. 12.
    D.C. Brown, Decentering distortion of lenses. Photogramm. Eng. 32(3), 444–462 (1966)Google Scholar
  13. 13.
    J.M. Rüeger, Electronic Distance Measurement: an Introduction, 3rd edtion (Springer-Verlag, Heidelberg, 1990)CrossRefGoogle Scholar
  14. 14.
    H. Rapp, M. Frank, F.A. Hamprecht, B. Jähne, A theoretical and experimental investigation of the systematic errors and statistical uncertainties of Time-Of-Flight-cameras. Int. J. Intell. Syst. Technol. Appl. 5, 402–413 (2008)Google Scholar
  15. 15.
    T. Pattinson, Quantification and Description of Distance Measurement Errors of a Time-Of-Flight Camera, MSc thesis (University of Stuttgart. 2010)Google Scholar
  16. 16.
    M. Lindner, I. Schiller, A. Kolb, R. Koch, Time-Of-Flight sensor calibration for accurate range sensing. Comput. Vis. Image Underst. 114(12), 1318–1328 (2010)CrossRefGoogle Scholar
  17. 17.
    M. Shahbazi, S. Homayouni. M. Saadatseresht and M. Satari, Range camera self-calibration based on integrated bundle adjustment via joint setup with a 2D digital camera. Sensors, 11 (9), 8721–8740 (2011)Google Scholar
  18. 18.
    S. Fuchs and S. May, Calibration and registration for precise surface reconstruction with TOF cameras. Proceedings of the dynamic 3D imaging workshop (Heidelberg, 11 Sept 2007) 9 ppGoogle Scholar
  19. 19.
    H. Du, T. Oggier, F. Lustenburger and E. Charbon, A virtual keyboard based on true-3D optical ranging, Proceedings of the British Machine Vision Conference (Oxford, 5–8 September 2005) p 10Google Scholar
  20. 20.
    W. Karel and N. Pfeifer. Range camera calibration based on image sequences and dense, comprehensive error statistics. In: Beraldin, J.-A., Cheok, G.S., McCarthy, M., Neuschaefer-Rube, U. (Eds.). 3D Imaging Metrology. In: Proceedings of SPIE Vol 7239. 19–20 Jan, pp. 72390D1–72390D12, 2009Google Scholar
  21. 21.
    S. Fuchs and G. Hirzinger. Extrinsic and depth calibration of TOF-cameras. In: Proc. IEEE Conference on computer vision and pattern recognition, CVPR, Anchorage, 24–26 June, 6 p. (2008)Google Scholar
  22. 22.
    Lindner, M., Kolb, A.,. Calibration of the intensity-related distance error of the PMD TOF-camera. In: Intelligent robots and computer vision XXV: Algorithms, techniques, and active vision. In: Casasent, D.P., Hall, E.L., Röning, J. (Eds.), Proc. of the SPIE. Boston, MA, 9 September, 8 p (2007)Google Scholar
  23. 23.
    T. Kahlmann, H. Ingensand, Calibration and development for increased accuracy of 3D range imaging cameras. J.Appl. Geodesy 2(1), 1–11 (2008)CrossRefGoogle Scholar
  24. 24.
    W. Karel, S. Ghuffar, N. Pfeifer, Quantifying the distortion of distance observations caused by scattering in Time-Of-Flight range cameras. Int. Arch. Photogram. Remote Sens Spat Inf. Sci. 38 (Part 5), 316–321 (2010)Google Scholar
  25. 25.
    T. Kavli, T. Kirkhus, J.T. Thielemann and B. Jagielski. Modelling and compensating measurement errors caused by scattering in Time-Of-Flight cameras. In: Huang, P.D., Yoshizawa, T., Harding, K.G. (Eds.). Two- and three-dimensional methods for inspection and metrology VI. In: Proceedings of SPIE Vol 7066. 28 Aug, pp. 706604-1–10, 2008Google Scholar
  26. 26.
    W. Karel, S. Ghuffar, N. Pfeifer, Modelling and compensating internal light scattering in time of flight range cameras. Photogramm. Rec. 27(138), 155–174 (2012)Google Scholar
  27. 27.
    D.D. Lichti, C. Kim, S. Jamtsho, An integrated bundle adjustment approach to range-camera geometric self-calibration. ISPRS J. Photogram. Remote Sens. 65(4), 360–368 (2010)CrossRefGoogle Scholar
  28. 28.
    F. Chiabrando, D. Piatti, F. Remondino, SR-4000 TOF camera: further experimental tests and applications to metric surveys. Int. Arch. Photogram. Remote. Sens. Spat. Inf. Sci. XXXVIII, Part 5, 149–154 (2010)Google Scholar
  29. 29.
    D. Piatti. Time of flight cameras: tests, calibration and multi-frame registration for automatic 3D object reconstruction. Ph.D. thesis, Politecnico di Torino, Italy. (2011)Google Scholar
  30. 30.
    M. Lindner, A. Kolb, Lateral and Depth Calibration of PMD-Distance Sensors. Adv. Visual. Comput. Springer 2, 524–533 (2006)CrossRefGoogle Scholar
  31. 31.
    F. Chiabrando, R. Chiabrando, D. Piatti, F. Rinaudo, Sensors for 3D imaging: metric evaluation and calibration of a CCD/CMOS Time-Of-Flight camera. Sensors 9(12), 10080–10096 (2009)CrossRefGoogle Scholar
  32. 32.
    B Jutzi., Investigations on ambiguity unwrapping of range images. Int. Arch.Photogram. Remote Sens. Spat. Inf. Sci. 38 (Part 3/W8), 265–270, 2009Google Scholar
  33. 33.
    D. Falie and V. Buzuloiu, Further investigations on TOF cameras distance errors and their corrections. European Conference on Circuits and Systems for Communications, 197–200 (2008)Google Scholar
  34. 34.
    A.A. Dorrington, J.P. Godbaz, M.J. Cree, A.D. Payne, L.V. Streeter, Separating true range measurements from multi-path and scattering interference in commercial range cameras. Proceedings of SPIE 7864 (2011)Google Scholar
  35. 35.
    W. Förstner, Generic estimation procedures for orientation with minimum and redundant information. In: Gruen, A., and Huang T.S. (Eds.). Calibration and Orientation of Cameras in Computer Vision, 63–94 (2001)Google Scholar
  36. 36.
    C.S. Fraser, Photogrammetric camera component calibration: a review of analytical techniques. In: A. Gruen and T.S. Huang (Eds.). Calibration and Orientation of Cameras in Computer Vision, 95–121 (2001)Google Scholar
  37. 37.
    J. F. Kenefick, M. S. Gyer and B. F. Harp, Analytical self-calibration. Photogram. Eng., 38 (11), 1117–1126 (1972)Google Scholar
  38. 38.
    S. Robbins, B. Murawski and B. Schroeder, Photogrammetric calibration and colorization of the SwissRanger SR-3100 3-D range imaging sensor, Opt. Eng. 48 (5), 053603-1–8 (2009)Google Scholar
  39. 39.
    W. Karel, Integrated range camera calibration using image sequences from hand-held operation. Int. Arch. Photogram. Remote Sens Spat Inf. Sci. 37 (Part B5), 945–951 (2008)Google Scholar
  40. 40.
    J. Boehm, and T. Pattinson, Accuracy of exterior orientation for a range camera. Int. Arch. Photogram. Remote. Sens. Spat. Inf. Sci. 38 (Part 5) [On CD-ROM] (2010)Google Scholar
  41. 41.
    D.D. Lichti, C. Kim, A comparison of three geometric self-calibration methods for range cameras. Remote Sensing 3(5), 1014–1028 (2011)CrossRefGoogle Scholar
  42. 42.
    C.S. Fraser, Optimization of precision in close-range photogrammetry. Photogram. Eng. Remote Sens. 48(4), 561–570 (1982)Google Scholar
  43. 43.
    S. Kuang, Geodetic Network Analysis and Optimal Design: Concepts and Applications (Ann Arbor Press, Chelsea, 1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nobert Pfeifer
    • 1
  • Derek Lichti
    • 2
  • Jan Böhm
    • 3
  • Wilfried Karel
    • 1
  1. 1.Department of Geodesy and GeoinformationVienna University of TechnologyViennaAustria
  2. 2.Department of Geomatics EngineeringUniversity of CalgaryCalgaryCanada
  3. 3.Department of Civil, Environmental and Geomatic EngineeringUniversity College LondonLondonUK

Personalised recommendations