Advertisement

Understanding and Ameliorating Mixed Pixels and Multipath Interference in AMCW Lidar

  • John P. Godbaz
  • Adrian A. Dorrington
  • Michael J. Cree
Chapter

Abstract

Amplitude modulated continuous wave (AMCW) lidar systems suffer from significant systematic errors due to mixed pixels and multipath interference. Commercial systems can achieve centimetre precision, however accuracy is typically an order of magnitude worse limiting practical use of these devices. In this chapter the authors address AMCW measurement formation and the causes of mixed pixels and multipath interference. A comprehensive review of the literature is given, from the first reports of mixed pixels in point-scanning AMCW systems, through to the gamut of research over the past two decades into mixed pixels and multipath interference. An overview of a variety of detection and mitigation techniques, including deconvolution based intra-camera scattering reduction, modelling of intra-scene scattering, correlation waveform deconvolution techniques/multifrequency sampling and standard removal approaches, all of which can be applied to range-data from standard commercial cameras is presented. The chapter concludes with comments on future work for better detection and correction of systematic errors in full-field AMCW lidar.

Keywords

Spatial Frequency Point Spread Function Lidar System Illumination Source Mixed Pixel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.A. Dorrington, M.J. Cree, A.D. Payne, R.M. Conroy, D.A. Carnegie, Meas. Sci. Tech. 18(9), 2809 (2007)CrossRefGoogle Scholar
  2. 2.
    J.P. Godbaz, M.J. Cree, A.A. Dorrington, in ACCV, 2011. Lecture Notes in Computer Science, vol. 6495 (Springer, Berlin, 2011), pp. 397–409Google Scholar
  3. 3.
    J.P. Godbaz, M.J. Cree, A.A. Dorrington, Remote Sens. 4, 21–42 (2012)Google Scholar
  4. 4.
    C.I. Chang, X.L. Zhao, M.L.G. Althouse, J.J. Pan, IEEE Trans. Geosci. Remote Sens. 36, 898 (1998). doi: 10.1109/36.673681 CrossRefGoogle Scholar
  5. 5.
    B.W. Schilling, D.N. Barr, G.C. Templeton, L.J. Mizerka, C.W. Trussell, Appl. Opt. 41, 2791 (2002)CrossRefGoogle Scholar
  6. 6.
    U. Stilla, B. Jutzi, in Topographic Laser Ranging and Scanning. Principles and Processing, ed. by J. Shan, Chap. 7 (CRC Press, Boca Raton, 2009), pp. 215–234Google Scholar
  7. 7.
    J. Tuley, N. Vandapel, M. Hebert, Analysis and removal of artifacts in 3-d ladar data. Technical report, Carnegie Mellon University Robotics Institute, 2004Google Scholar
  8. 8.
    J. Tuley, N. Vandapel, M. Hebert, in IEEE International Conference on Robotics and Automation, 2005, pp. 2203–2210Google Scholar
  9. 9.
    J.P. Godbaz, M.J. Cree, A.A. Dorrington, in Image and Vision Computing New Zealand (IVCNZ’08), 2008, pp. 1–6Google Scholar
  10. 10.
    I.S. Kweon, R. Hoffman, E. Krotkov, Experimental characterization of the perceptron laser rangefinder. Technical report, Robotics Institute Carnegie Mellon University, 1991Google Scholar
  11. 11.
    M. Hebert, E. Krotkov, IVC 10, 170 (1992)CrossRefGoogle Scholar
  12. 12.
    M.D. Adams, in Proceedings of IEEE International Conference on Robotics and Automation, vol. 2, 1993, pp. 8–13Google Scholar
  13. 13.
    S. Oprisescu, D. Falie, M. Ciuc, V. Buzuloiu, in Proceedings of International Symposium on Signals, Circuits and Systems 2007, ISSCS, 2007Google Scholar
  14. 14.
    S.A. Guomundsson, H. Aanaes, R. Larsen, in Proceedings of International Symposium on Signals, Circuits and Systems 2007, ISSCS, 2007Google Scholar
  15. 15.
    M. Lindner, I. Schiller, A. Kolb, R. Koch, Comput. Vis. Image Underst. 114, 1318 (2010). doi: 10.1016/j.cviu.2009.11.002
  16. 16.
    M.D. Adams, P.J. Probert, Int. J. Rob. Res. 15(5), 441 (1996)CrossRefGoogle Scholar
  17. 17.
    P. Tang, D. Huber, B. Akinci, A Comparative Analysis of Depth-Discontinuity and Mixed-Pixel Detection Algorithms in Proceedings of the International Conference on 3-D Digital Imaging and Modeling (3DIM) (Los Alamitos, 2007), pp. 29–38Google Scholar
  18. 18.
    P. Tang, B. Akinci, D. Huber, Quantification of edge loss of laser scanned data at spatial discontinuities. Autom. Constr. 18, 1070–1083 (2009)CrossRefGoogle Scholar
  19. 19.
    M.D. Adams, in Proceedings of 2001 IEEE/RSJ International Conference on Robots and Systems, 2001, pp. 1726–1731Google Scholar
  20. 20.
    A.D. Sappa, M. Devy, in Proceedings of Third International Conference on 3-D Imaging and Modelling (3DIM ’01), 2001Google Scholar
  21. 21.
    N. Vandapel, D.F. Huber, A. Kapuria, M. Hebert, in Proceedings of the IEEE International Conference on Robotics and Automation ICRA ’04, vol. 5, 2004, pp. 5117–5122Google Scholar
  22. 22.
    M. Lindner, A. Kolb, in Proceedings of the SPIE Intelligent Robots and Computer Vision XXV: Algorithms, Techniques, and Active Vision, vol. 6764, 2007. doi: 10.1117/12.752808
  23. 23.
    N. Abdo, A. Borgeat, 3D camera calibration. Technical report, 2010Google Scholar
  24. 24.
    W. Karel, S. Ghuffar, N. Pfeifer, in International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 5 Commision V Symposium, 2010Google Scholar
  25. 25.
    D. Falie, V. Buzuloiu, in Proceedings of 2007 International Symposium on Signals, Circuits and Systems (ISSCS), 2007Google Scholar
  26. 26.
    S. Jamtsho, D. Lichti, in Proceedings of the ISPRS Commission V Mid-Term Symposium on Close Range Image, Measurement Techniques, 2010Google Scholar
  27. 27.
    J.P. Godbaz, M.J. Cree, A.A. Dorrington, in Image and Vision Computing New Zealand 2009 (IVCNZ’ 09), 2009, pp. 304–309Google Scholar
  28. 28.
    D. Falie, V. Buzuloiu, in Proceedings of the IEEE International Workshop on Imaging Systems and Techniques, IST 2008Google Scholar
  29. 29.
    D. Falie, Improvements of the 3D images captured with Time-Of-Flight cameras. Technical report, Politehnica University of Bucharest, 2009Google Scholar
  30. 30.
    D. Falie, in 2008 International Conference on Optical Instruments and Technology: Optical Systems and Optoelectronic Instruments. Proceedings of the SPIE, vol. 7156, 2008. doi: 10.1117/12.807125
  31. 31.
    D. Falie, IET Image Process. 5(5), 523 (2011)Google Scholar
  32. 32.
    T. Kavli, T. Kirkhus, J.T. Thielemann, B. Jagielski, in Two- and Three-Dimensional Methods for Inspection and Metrology VI (SPIE), 2008. doi: 10.1117/12.791019
  33. 33.
    J. Mure-Dubois, H. Hügli, in Two- and Three-Dimensional Methods for Inspection and Metrology V, vol. 6762 (SPIE, Boston, 2007)Google Scholar
  34. 34.
    J. Mure-Dubois, H. Hügli, in Proceedings of the ICVS Workshop on Camera Calibration Methods for Computer Vision Systems, CCMVS2007, 2007Google Scholar
  35. 35.
    L. Landweber, Am. J. Math. 73(3), 615 (1951)CrossRefGoogle Scholar
  36. 36.
    L.B. Lucy, Astron. J. 79, 745 (1974)CrossRefGoogle Scholar
  37. 37.
    W.H. Richardson, J. Opt. Soc. Am. (1917–1983) 62, 55 (1972)Google Scholar
  38. 38.
    S. Fuchs, in Proceedings of the 2010 20th International Conference on Pattern Recognition, (IEEE Computer Society, Washington, DC, 2010), pp. 3583–3586. doi: 10.1109/ICPR.2010.874
  39. 39.
    R.L. Larkins, M.J. Cree, A.A. Dorrington, J.P. Godbaz, in Image and Vision Computing New Zealand 2009 (IVCNZ ’09), 2009, pp. 431–436Google Scholar
  40. 40.
    N. Otsu, IEEE transactions on systems. Man Cybern. 9(1), 62 (1979). doi: 10.1109/TSMC.1979.4310076 CrossRefGoogle Scholar
  41. 41.
    M.L. Simpson, M.D. Cheng, T.Q. Dam, K.E. Lenox, J.R. Price, J.M. Storey, E.A. Wachter, W.G. Fisher, Appl. Opt. 44, 7210 (2005)CrossRefGoogle Scholar
  42. 42.
    M.A. Hofton, J.B. Minster, J.B. Blair, IEEE Trans. Geosci. Remote Sens. 38, 1989 (2000). doi: 10.1109/36.851780 CrossRefGoogle Scholar
  43. 43.
    A. Chauve, C. Mallet, F. Bretar, S. Durrieu, M.P. Deseilligny, W. Puech, in International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2007Google Scholar
  44. 44.
    J.P. Godbaz, M.J. Cree, A.A. Dorrington, in SPIE 7251—Image Processing: Machine Vision Applications II, vol. 7251 (SPIE, San Jose, 2009), p. 72510TGoogle Scholar
  45. 45.
    M. Soumekh, Synthetic Aperture Radar Signal Processing with MATLAB Algorithms (Wiley, New York, 1999)Google Scholar
  46. 46.
    M. Jankiraman, Design of Multifrequency CW Radars (Scitech, Raleigh, 2007)Google Scholar
  47. 47.
    S. Levy, P.K. Fullagar, Geophysics 46(9), 1235 (1981)CrossRefGoogle Scholar
  48. 48.
    A.A. Dorrington, J.P. Godbaz, M.J. Cree, A.D. Payne, L.V. Streeter, in SPIE 7864—Three-Dimensional Imaging, Interaction, and Measurement, San Francisco, 2011Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • John P. Godbaz
    • 1
  • Adrian A. Dorrington
    • 1
  • Michael J. Cree
    • 1
  1. 1.School of EngineeringUniversity of WaikatoHamiltonNew Zealand

Personalised recommendations