SPAD-Based Sensors

  • Edoardo Charbon
  • Matt Fishburn
  • Richard Walker
  • Robert K. Henderson
  • Cristiano Niclass


3D imaging and multi-pixel rangefinding constitute one of the most important and innovative fields of research in image sensor science and engineering in the past years. In rangefinding, one computes the Time-Of-Flight of a ray of light, generated by a mono-chromatic or wide-spectral source, from the source through the reflection of a target object and to a detector. There exist at least two techniques to measure the Time-Of-Flight (TOF): a direct and an indirect technique. In direct techniques (D-TOF), the time difference between a START pulse, synchronized with the light source, and a STOP signal generated by the detector is evaluated. In indirect techniques (I-TOF), a continuous sinusoidal light wave is emitted and the phase difference between outgoing and incoming signals is measured. From the phase difference, the time difference is derived using well-known formulae.


Image Sensor Stop Signal CMOS Technology Depletion Region Ring Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the Swiss National Science Foundation, the Swiss Government sponsored Nano-Tera and MICS grants, and Xilinx Inc.’s University Program.


  1. 1.
    S. Cova, A. Longoni, A. Andreoni, Towards picosecond resolution with single-photon avalanche diodes. Rev. Sci. Instr. 52(3), 408–412 (1981)CrossRefGoogle Scholar
  2. 2.
    R.J. McIntyre, Recent developments in silicon avalanche photodiodes. Measurement 3(4), 146–152 (1985)CrossRefGoogle Scholar
  3. 3.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley-Interscience, New York, 1981)Google Scholar
  4. 4.
    A. Spinelli, A. Lacaita, Physics and numerical simulation of single photon avalanche diodes. IEEE Trans. Electron Devices 44, 1931–1943 (1997)CrossRefGoogle Scholar
  5. 5.
    G. Ripamonti, S. Cova, Carrier diffusion effects in the time-response of a fast photodiode. Solid-State Electron. 28(9), 925–931 (1985)CrossRefGoogle Scholar
  6. 6.
    M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R.K. Henderson, L. Grant, E. Charbon, A low-noise single-photon detector implemented in a 130 nm CMOS imaging process. Solid-State Electron. 53(7), 803–808 (2009)CrossRefGoogle Scholar
  7. 7.
    J. Richardson, L. Grant, R. Henderson, A low-dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology, International Image Sensor Workshop (2009)Google Scholar
  8. 8.
    S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, Avalanche photodiodes and quenching circuits for single-photon detection. Appl. Opt. 35(12), 1956–1976 (1996)CrossRefGoogle Scholar
  9. 9.
    A. Rochas et al., Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology. Rev. Sci. Instr. 74(7), 3263–3270 (2003)CrossRefGoogle Scholar
  10. 10.
    C. Niclass, C. Favi, T. Kluter, M. Gersbach, E. Charbon, A 128x128 Single-Photon Image Sensor with Column-Level 10-bit Time-to-Digital Converter Array. IEEE J. Solid-State Circuits 43(12), 2977–2989 (2008)CrossRefGoogle Scholar
  11. 11.
    C. Niclass, M. Sergio, and E. Charbon, A single photon avalanche diode array fabricated in deep-submicron CMOS technology, IEEE Design, Automation and Test in Europe, 1–6 (2006)Google Scholar
  12. 12.
    H. Finkelstein, M.J. Hsu, S.C. Esener, STI-Bounded single-photon avalanche diode in a deep-submicrometer CMOS technology. IEEE Electron Device Lett. 27(11), 887–889 (2006)Google Scholar
  13. 13.
    C. Niclass, M. Sergio, E. Charbon, A Single Photon Avalanche Diode Array Fabricated in 0.35μm CMOS and based on an Event-Driven Readout for TCSPC Experiments (SPIE Optics East, Boston, 2006)Google Scholar
  14. 14.
    D. Stoppa, L. Pacheri, M. Scandiuzzo, L. Gonzo, G.-F. Della Betta, A. Simoni, A CMOS 3-D imager based on single photon avalanche diode. IEEE Trans. Circuits Syst. 54(1), 4–12 (2007)Google Scholar
  15. 15.
    L. Pancheri, D. Stoppa, Low-noise CMOS Single-photon Avalanche Diodes with 32 ns Dead Time, in IEEE European Solid-State Device Conference (2007)Google Scholar
  16. 16.
    N. Faramarzpour, M.J. Deen, S. Shirani, Q. Fang, Fully integrated single photon avalanche diode detector in standard CMOS 0.18-um technology. IEEE Trans. Electron Devices 55(3), 760–767 (2008)CrossRefGoogle Scholar
  17. 17.
    C. Niclass, M. Sergio, E. Charbon, A CMOS 64x48 single photon avalanche diode array with event-driven readout, in IEEE European Solid-State Circuit Conference (2006)Google Scholar
  18. 18.
    J.S. Massa, G.S. Buller, A.C. Walker, S. Cova, M. Umasuthan, A.M. Wallace, Time-pf-flight optical ranging system based on time-correlated single-photon counting. App. Opt. 37(31), 7298–7304 (1998)CrossRefGoogle Scholar
  19. 19.
    M.A. Albota et al., Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays. Lincoln Labs J. 13(2) (2002)Google Scholar
  20. 20.
    C. Niclass, A. Rochas, P.A. Besse, E. Charbon, Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes. IEEE J. Solid-State Circuits 40(9), 1847–1854 (2005)CrossRefGoogle Scholar
  21. 21.
    M. Sergio, C. Niclass, E. Charbon, A 128x2 CMOS single photon streak camera with timing-preserving latchless pipeline readout, in IEEE International Solid-State Circuits Conference (2007), pp. 120–121 Google Scholar
  22. 22.
    J.M. Pavia, C. Niclass, C. Favi, M. Wolf, E. Charbon, 3D near-infrared imaging based on a SPAD image sensor, International Image Sensor Workshop (2011)Google Scholar
  23. 23.
    J.-P. Jansson et al., A CMOS time-to-digital converter with better than 10 ps single-shot precision. IEEE J. Solid-State Circuits 41(6), 1286–1296 (2006)CrossRefGoogle Scholar
  24. 24.
    A.S. Yousif et al., A fine resolution TDC architecture for next generation PET imaging. IEEE Trans. Nucl. Sci. 54(5), 1574–1582 (2007)CrossRefGoogle Scholar
  25. 25.
    M. Lee, et al., A 9b, 1.25 ps resolution coarse-fine time-to-digital converter in 90 nm cmos that amplifies a time residue, in IEEE Symposium on VLSI Circuits (2007), pp. 168–169Google Scholar
  26. 26.
    P. Chen et al., A low-cost low-power CMOS time-to-digital converter based on pulse stretching. IEEE Trans. Nucl. Sci. 53(4), 2215–2220 (2006)CrossRefGoogle Scholar
  27. 27.
    J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, R.K. Henderson, A 32x32 50 ps resolution 10 bit time to digital converter array in 130 nm CMOS for time correlated imaging, in IEEE Custom Integrated Circuits Conference (2009), pp. 77–80Google Scholar
  28. 28.
    M. Gersbach, Y. Maruyama, E. Labonne, J. Richardson, R. Walker, L. Grant, R.K. Henderson, F. Borghetti, D. Stoppa, E. Charbon, A Parallel 32x32 time-to-digital converter array fabricated in a 130 nm imaging CMOS technology, in IEEE European Solid-State Device Conference (2009)Google Scholar
  29. 29.
    C. Veerappan, J. Richardson, R. Walker, D.U. Li, M.W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R.K. Henderson, E. Charbon, A 160x128 single-photon image sensor with on-pixel, 55 ps 10b time-to-digital converter,in IEEE International Solid-State Circuits Conference (2011), pp. 312–314Google Scholar
  30. 30.
    D. Stoppa, F. Borghetti, J. Richardson, R. Walker, L. Grant, R.K. Henderson, M. Gersbach, E. Charbon, A 32x32-pixel array with in-pixel photon counting and arrival time measurement in the analog domain, in IEEE European Solid-State Device Conference (2009), pp. 204–207Google Scholar
  31. 31.
    R.J. Walker, J.R. Richardson, R.K. Henderson; A 128 × 96 pixel event-driven phase-domain ΔΣ-Based fully digital 3D camera in 0.13 μm CMOS imaging technology”, in IEEE International Solid-State Circuits Conference (2011), pp. 410–412Google Scholar
  32. 32.
    M.A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, Geiger-mode avalanche photodiode focal plane arrays for three-dimensional imaging LADAR, in SPIE Infrared Remote Sensing and Instrumentation (2010), p. 7808Google Scholar
  33. 33.
    B. Aull, J. Burns, C. Chenson, B. Felton, H. Hanson, C. Keast, J. Knecht, A. Loomis, M. Renzi, A. Soares, S. Vyshnavi, K. Warner, D. Wolfson, D. Yost, D. Young, Laser radar imager based on 3D integration of Geiger-Mode avalanche photodiodes with two SOI timing circuit layers, in Proceedings of the IEEE International Solid-State Circuits (2006), 304–305Google Scholar
  34. 34.
    T. Spirig, P. Seitz, O. Vietze, F. Heitger, The lock-in CCD-two-dimensional synchronous detection of light. IEEE J. Quantum Electron. 31(9), 1705–1708 (1995)CrossRefGoogle Scholar
  35. 35.
    R. Miyagawa, T. Kanade, CCD-based range-finding sensor. IEEE Trans. Electron Devices 41(10), 1648–1652 (1997)CrossRefGoogle Scholar
  36. 36.
    R. Lange, P. Seitz, Solid-state Time-Of-Flight range camera. IEEE J. Quantum Electron. 37(3), 390–397 (2001)CrossRefGoogle Scholar
  37. 37.
    R. Schwarte, Z. Xu, H. Heinol, J. Olk, B. Buxbaum, New optical four-quadrant phase detector integrated into a photogate array for small and precise 3D cameras. SPIE Three-Dimensional Image Capture 3023, 119–128 (1997)CrossRefGoogle Scholar
  38. 38.
    C. Bamji, E. Charbon, Systems for CMOS-compatible three-dimensional image sensing using quantum efficiency modulation, US Patent 6,580,496 (2003)Google Scholar
  39. 39.
    C. Niclass, C. Favi, T. Kluter, F. Monnier, E. Charbon, Single-photon synchronous detection. IEEE J. Solid-State Circuits 44(7), 1977–1989 (2009)CrossRefGoogle Scholar
  40. 40.
    S. Donati, G. Martini, M. Norgia, Microconcentrators to recover fill-factor in image photodetectors with pixel on-board processing circuits. Opt. Express 15(26), 18066–18075 (2007)CrossRefGoogle Scholar
  41. 41.
    S. Kawahito, A. Yamasawa, S. Koga, Y. Tadokoro, K. Mizuno, O. Tabata; Digital interface circuits using sigma-delta modulation for integrated micro-fluxgate magnetic sensors, in IEEE International Symposium on Circuits and Systems, vol. 4 (1996), pp. 340–343Google Scholar
  42. 42.
    C. van Vroonhoven, K. Makinwa, A CMOS temperature-to-digital converter with an inaccuracy of ± 0.5°C (3σ) from −55 to 125°C, in IEEE International Solid-State Circuits Conference (2008), pp. 576–637Google Scholar
  43. 43.
    S. Kawahito, I.A. Halin, T. Ushinaga, T. Sawada, M. Homma, Y. Maeda, A CMOS Time-Of-Flight range image sensor with gates-on-field-oxide structure. IEEE Sens. J. 7(12), 1578–1586 (2007)CrossRefGoogle Scholar
  44. 44.
    C. Niclass, M. Soga, S. Kato, A 0.18 μm CMOS single-photon sensor for coaxial laser rangefinders, in Asian Solid-State Circuits Conference (2010)Google Scholar
  45. 45.
    M. Karami, M. Gersbach, E. Charbon, A new single-photon avalanche diode in 90 nm standard CMOS technology, SPIE Optics + Photonics, NanoScience Engineering, Single-Photon Imaging (2010)Google Scholar
  46. 46.
    R.K. Henderson, E. Webster, R. Walker, J.A. Richardson, L.A. Grant, A 3x3, 5um Pitch, 3-transistor single photon avalanche diode array with integrated 11 V bias generation in 90 nm CMOS technology, in IEEE International Electron Device Meeting (2010), pp. 1421–1424Google Scholar
  47. 47.
    E.A.G.Webster, J.A. Richardson, L.A. Grant, D. Renshaw, R.K. Henderson, An infra-red sensitive, low noise, single-photon avalanche diode in 90 nm CMOS. International Image Sensor Workshop (IISW), Hokkaido, 8–11 June 2011Google Scholar
  48. 48.
    L. Pancheri, N. Massari, F. Borghetti, D. Stoppa, A 32x32 SPAD pixel array with nanosecond gating and analog readout. International Image Sensor Workshop (IISW), Hokkaido, 8–11 June 2011Google Scholar
  49. 49.
    A. Sammak, M. Aminian, L. Qi, W.D. de Boer, E. Charbon, L. Nanver, A CMOS Compatible Ge-on-Si APD Operating in Proportional and Geiger Modes at Infrared Wavelengths, in International Electron Device Meeting (2011)Google Scholar
  50. 50.
    Z. Lu, Y. Kang, C. Hu, Q. Zhou, H.-D. Liu, J.C. Campbell, Geiger-mode operation of Ge-on-Si avalanche photodiodes. IEEE J. Quantum Electron. 47(5), 731–735 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Edoardo Charbon
    • 1
  • Matt Fishburn
    • 1
  • Richard Walker
    • 2
  • Robert K. Henderson
    • 2
  • Cristiano Niclass
    • 3
  1. 1.TU DelftDelftThe Netherlands
  2. 2.The University of EdinburghEdinburghScotland, U.K
  3. 3.EPFLLausanneSwitzerland

Personalised recommendations