TOF Cameras in Ambient Assisted Living Applications



In the area of smart environments, vision-based sensing technologies are increasingly investigated to support aging-in-place within the context of Ambient Assisted Living (AAL) research. Range Imaging (RIM) constitutes an important technological innovation in the field of camera-based solutions. In fact, fusing together distance measurements with image processing capabilities, RIM overcomes limitations of passive vision traditionally pursued by camera-based solutions. This chapter aims to highlight the benefits of RIM technologies, in particular Time-Of-Flight (TOF)-based, in AAL applications.


Floor Plane Fall Detection Ambient Assist Live Reeb Graph Posture Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N. Foldi, L. Kaplan, J. Ly, O. Nikelshpur, M. Lucy, B. Jeffrey, ADL functions and relationship to cognitive status. Alzheimer’s Dement. J. Alzheimer’s Assoc. 7(4), S244 (2011)CrossRefGoogle Scholar
  2. 2.
    N. Shah, M. Kapuria, K. Newman, in Embedded activity monitoring methods. Activity Recognition in Pervasive Intelligent Environments, vol 4(13) (Atlantis Press, Amsterdam, 2011), pp. 291–311Google Scholar
  3. 3.
    B. Kröse, T. Oosterhout, T. Kasteren, Activity Monitoring Systems in Health Care, in Computer Analysis of Human Behavior, vol. 12 (Springer, London, 2011), pp. 325–346Google Scholar
  4. 4.
    A. Agarwal, B. Triggs, Recovering 3D human pose from monocular images. IEEE Trans. PAMI 28(1), 44–58 (2006)CrossRefGoogle Scholar
  5. 5.
    A. Fossati, M. Dimitrijevic, V. Lepetit, P. Fua, From canonical poses to 3D motion capture using a single camera. IEEE Trans. PAMI 32(7), 1165–1181 (2010)CrossRefGoogle Scholar
  6. 6.
    S.N. Lim, A. Mittal, L.S. Davis, N. Paragios, Fast illumination invariant background subtraction using two views: error analysis, sensor placement and applications. Proc. Comput. Vis. Pattern Recogn. 1, 1071–1078 (2005)Google Scholar
  7. 7.
    R.I. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed. (Cambridge University Press, Cambridge, 2004)Google Scholar
  8. 8.
    V. Ganapathi, C. Plagemann, S. Thrun, D. Koller, Real time motion capture using a single Time-Of-Flight camera, in Proceedings of CVPR, pp. 755–762 2010Google Scholar
  9. 9.
    W. Li, Z. Zhang, Z. Liu, Action recognition based on a bag of 3D points, in Proceedings of CVPRW, pp. 9–14 2010Google Scholar
  10. 10.
    C. Plagemann, V. Ganapathi, D. Koller, S. Thrun, Real-time identification and localization of body parts from depth images, in Proceedings of ICRA, pp. 3108–3113 2010Google Scholar
  11. 11.
    S. Oprisescu, C. Burlacu, V. Buzuloiu, Action recognition using time of flight cameras, in Proceedings of COMM, pp. 153–156 2010Google Scholar
  12. 12.
    C. Rougier, E. Auvinet, J. Rousseau, M. Mignotte, J. Meunier, Fall detection from depth map video sequences. Lect. Notes Comput. Sci. 6719(2011), 121–128 (2011)CrossRefGoogle Scholar
  13. 13.
    D. Falie, M. Ichim, Sleep monitoring and sleep apnea event detection using a 3D camera, in Proceedings of 8th IEEE International Conference on Communications (COMM), pp. 177–180 2010Google Scholar
  14. 14.
    M. Grassi, A. Lombardi, G. Rescio, M. Ferri, P. Malcovati, A. Leone, G. Diraco, P. Siciliano, M. Malfatti, L. Gonzo, An integrated system for people fall-detection with data fusion capabilities based on 3D TOF camera and wireless accelerometer, in Proceedings of IEEE Sensors, pp. 1016–1019 2010Google Scholar
  15. 15.
    G. Diraco, A. Leone, P. Siciliano, Geodesic-based human posture analysis by using a single 3D TOF camera, in Proceedings of IEEE International Symposium on Industrial Electronics (ISIE), pp. 1329–1334 2011Google Scholar
  16. 16.
    A. Leone, G. Diraco, P. Siciliano, Detecting falls with 3D range camera in ambient assisted living applications: a preliminary study. Med. Eng. Phys. J. 33(6), 770–781 (2011)CrossRefGoogle Scholar
  17. 17.
  18. 18.
    A. Kolb, E. Barth, R. Koch, TOF-sensors: new dimensions for realism and interactivity, in Proceedings of Computer Vision and Pattern Recognition Workshops, pp. 1–6 2008Google Scholar
  19. 19.
    S. Foix, G. Alenyà, C. Torras, Lock-in Time-Of-Flight (TOF) cameras: a survey. IEEE Sens. J. 11(9), 1917–1926 (2011)CrossRefGoogle Scholar
  20. 20.
    S.A. Guomundsson, H. Aanaes, R. Larsen, Environmental effects on measurement uncertainties of Time-Of-Flight cameras. Proc. IEEE ISSCS 1, 1–4 (2007)Google Scholar
  21. 21.
    D. Lee, Effective Gaussian mixture learning for video background subtraction. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 827–832 (2005)CrossRefGoogle Scholar
  22. 22.
    N. Noury, P. Rumeau, A.K. Bourke, G. ÓLaighin, J.E. Lundy, A proposal for the classification and evaluation of fall detectors. J. IRBM 29(6), 340–349 (2008)Google Scholar
  23. 23.
    M.C. Chung, K.J. McKee, C. Austin, H. Barkby, H. Brown, S. Cash, J. Ellingford, L. Hanger, T. Pais, Posttraumatic stress disorder in older people after a fall. Int. J. Geriatr. Psychiatry 24(9), 955–964 (2009)CrossRefGoogle Scholar
  24. 24.
    S. Sadigh, A. Reimers, R. Andersson, L. Laflamme, Falls and fall-related injuries among the elderly: a survey of residential-care facilities in a Swedish municipality. J. Commun. Health 29, 129–140 (2004)CrossRefGoogle Scholar
  25. 25.
    A. Shumway-Cook, M.A. Ciol, J. Hoffman, B.J. Dudgeon, K. Yorkston, L. Chan, Falls in the medicare population: incidence, associated factors, and impact on health care. J. Phys. Ther. 89(4), 324–332 (2009)CrossRefGoogle Scholar
  26. 26.
    S.R. Lord, C. Sherrington, H.B. Menz, Falls in Older People. Risk Factors and Strategies for Prevention (Cambridge University Press, Cambridge, 2007)CrossRefGoogle Scholar
  27. 27.
    S. Elliott, J. Painter, S. Hudson, Living alone and fall risk factors in community-dwelling middle age and older adults. J. Commun. Health 34, 301–310 (2009)CrossRefGoogle Scholar
  28. 28.
    M. Shaou-Gang, S. Fu-Chiau, H. Chia-Yuan, A smart vision-based human fall detection system for telehealth applications, in Proceedings of the 3rd Telehealth Conference, pp. 7–12 2007Google Scholar
  29. 29.
    B. Jansen, R. Deklerck, Context aware inactivity recognition for visual fall detection, in Proceedings of IEEE Pervasive Health Conference, pp. 1–4 2006Google Scholar
  30. 30.
    R. Cucchiara, A. Prati, R. Vezzani, A multi-camera vision system for fall detection and alarm generation. Expert Syst. J. 24(5), 334–345 (2007)CrossRefGoogle Scholar
  31. 31.
  32. 32.
    M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)CrossRefGoogle Scholar
  33. 33.
  34. 34.
    C. Fabien, B. Deepayan, A. Charith, S.H. Mark, Video based technology for ambient assisted living: a review of the literature. Environments 3, 253–269 (2011). IOS PressGoogle Scholar
  35. 35.
    D.S. Lee, Effective Gaussian mixture learning for video background subtraction. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 827–832 (2005)CrossRefGoogle Scholar
  36. 36.
    C. Stauffer, W. Grimson, Adaptive background mixture models for real-time tracking, in Proceedings of IEEE Computer Vision and Pattern Recognition Conference, pp. 246–252 1999Google Scholar
  37. 37.
  38. 38.
    R.E. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82(Series D), 35–45 (1960)Google Scholar
  39. 39.
    M. Isard, A. Blake, CONDENSATION—conditional density propagation for visual tracking. Int. J. Comput. Vis. 29(1), 5–28 (1998)CrossRefGoogle Scholar
  40. 40.
    N. Noury, A. Fleury, P. Rumeau, A.K. Bourke, G.O. Laighin, V. Rialle, J.E. Lundy, Fall detection—principles and methods, in Proceedings of the 29th IEEE EMBS, pp. 1663–1666 2007Google Scholar
  41. 41.
    J. Parkkari, P. Kannus, M. Palvanen, A. Natri, J. Vainio, H. Aho et al., Majority of hip fractures occur as a result of a fall and impact on the greater trochanter of the femur: a prospective controlled hip fracture study with 206 consecutive patients. Calcif. Tissue Int. 65, 183–187 (1999)CrossRefGoogle Scholar
  42. 42.
    T.B. Moeslund, A. Hilton, V. Kruger, A survey of advances in vision-based human motion capture and analysis. J. CVIU 104(2–3), 90–126 (2006)Google Scholar
  43. 43.
    J. Deutscher, I. Reid, Articulated body motion capture by stochastic search. Int. J. Comput. Vis. 61(2), 185–205 (2005)CrossRefGoogle Scholar
  44. 44.
    G. Mori, J. Malik, Recovering 3D human body configurations using shape contexts. IEEE Trans. PAMI 28(7), 1052–1061 (2006)CrossRefGoogle Scholar
  45. 45.
    R. Navaratnam, A.W. Fitzgibbon, R. Cipolla, Semi-supervised learning of joint density models for human pose estimation, in Proceedings of BMVC, vol. 2, pp. 679–688 2006Google Scholar
  46. 46.
    K. Mikolajczyk, D. Schmid, A. Zisserman, Human detection based on a probabilistic assembly of robust part detectors, in Proceedings of European Conference on Computer Vision (ECCV), pp. 69–81 2004Google Scholar
  47. 47.
    C. Sminchisescu, A. Kanaujia, Z. Li, D. Metaxas, Discriminative density propagation for 3D human motion estimation. Proc. Comput. Vis. Pattern Recogn. 1, 390–397 (2005)Google Scholar
  48. 48.
    L. Ren, G. Shakhnarovich, J.K. Hodgins, H. Pfister, P.A. Viola, Learning silhouette features for control of human motion. J. ACM TOG 24(4), 1303–1331 (2005)CrossRefGoogle Scholar
  49. 49.
    Q. Delamarre, O. Faugeras, 3D articulated models and multi view tracking with physical forces. J. CVIU 81(3), 328–357 (2001)Google Scholar
  50. 50.
    A. Leone, G. Diraco, P. Siciliano, Topological and volumetric posture recognition with active vision sensor in AAL contexts, in Proceedings of 4th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), pp. 110–114 2011Google Scholar
  51. 51.
    N. Werghi, Y. Xiao, J.P. Siebert, A functional-based segmentation of human body scans in arbitrary postures. J. T-SMCB 36(1), 153–165 (2006)Google Scholar
  52. 52.
    G. Reeb, Sur les points singuliers d’une forme de Pfaff complétement intégrable ou d’une fonction numérique. C.R. Acad. Sci. Paris 222, 847–849 (1946)Google Scholar
  53. 53.
    A. Verroust, F. Lazarus, Extracting skeletal curves from 3-D scattered data. Vis. Comput. 16(1), 15–25 (2000)CrossRefGoogle Scholar
  54. 54.
    C.J.C. Burges, A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 121–167 (1998)CrossRefGoogle Scholar
  55. 55.
    I. Steinwart, A. Christmann, Support vector machines (Springer, New York, 2008)Google Scholar
  56. 56.
    H. Dongcheol, C. Wallraven, L. Seong-Whan, View invariant body pose estimation based on biased manifold learning, in Proceedings of ICPR, pp. 3866–3869 2010Google Scholar
  57. 57.
    A.K. Bourke, G.M. Lyons, A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Med. Eng. Phys. J. 30(1), 84–90 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica ed i MicrosistemiLecceItaly

Personalised recommendations