State-of-the-Art of TOF Range-Imaging Sensors

  • Dario Piatti
  • Fabio Remondino
  • David Stoppa


The 3D information of a surveyed


Avalanche Diode Processing Circuitry LiDAR Instrument Dynamic Range Enhancement High Resistivity Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Schwarte, Principles of 3-D Imaging Technology, in Handbook of Computer Vision and Applications, ed. by B. Jähne, H. Haussecker, P. Geißler (Academic Press, 1999)Google Scholar
  2. 2.
    B. Jähne, H. Haussecker, P. Geißler, Handbook of Computer Vision and Applications, vol. 1 (Academic Press, San Diego, 1999) pp. 479–482Google Scholar
  3. 3.
    P. Besl, Active optical range imaging sensors. Mach. Vis. Appl. 1, 127–152 (1988)CrossRefGoogle Scholar
  4. 4.
    E.M. Mikhail, J.S. Betherl, J.C. McGlone, Introduction to modern photogrammetry (John Wiley & Sons, Inc., New York, 2001)Google Scholar
  5. 5.
    M.-C. Amann, T.B.M. Lescure, R. Myllyla, M. Rioux, Laser ranging: a critical review of usual techniques for distance measurement. Opt. Eng. 40, 10–19 (2001)CrossRefGoogle Scholar
  6. 6.
    F. Blais, Review of 20 years of range sensor development. J. Elect. Imaging 13(1), 231–243 (2004)CrossRefGoogle Scholar
  7. 7.
    B. Hosticka, P. Seitz, A. Simoni, Optical Time-Of-Fight sensors for solid-state 3D-vision. Encycl. Sens. 7, 259–289 (2006)Google Scholar
  8. 8.
    Leica-geosystem website,
  9. 9.
    Konicaminolta website,
  10. 10.
    F. Menna, F. Remondino, R. Battisti, E. Nocerino, Geometric investigation of a gaming active device. Proc. SPIE Opt. Metrol. 8085(1), 80850G (2011)Google Scholar
  11. 11.
    K. Khoshelham, sO Elberink, Accuracy and resolution of kinetic depth data for indoor mapping applications. Sensors 12, 1437–1454 (2012). doi: 10.3390/s120201437 CrossRefGoogle Scholar
  12. 12.
    M.A. Albota et al. Three-dimensional imaging laser radars with geiger-mode avalanche photodiode arrays. Lincoln Labs J. 13(2) 351–370 (2002)Google Scholar
  13. 13.
    C. Niclass, A. Rochas, P.A. Besse, E. Charbon, Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes. IEEE J. Solid-State Circuits 40(9), 1847–1854 (2005)CrossRefGoogle Scholar
  14. 14.
    J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, R. K. Henderson, A 32 × 32 50 ps resolution 10 bit time to digital converter array in 130 nm CMOS for time correlated imaging, in IEEE Custom Integrated Circuits Conference (2009) pp. 77–80Google Scholar
  15. 15.
    M. Gersbach, Y. Maruyama, E. Labonne, J. Richardson, R. Walker, L. Grant, R. K. Henderson, F. Borghetti, D. Stoppa, E. Charbon, “A Parallel 32 × 32 time-to-digital converter array fabricated in a 130 nm imaging CMOS technology”, in IEEE European Solid-State Device Conference (2009)Google Scholar
  16. 16.
    C. Veerappan, J. Richardson, R. Walker, D.U. Li, M.W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R.K. Henderson, E. Charbon, A 160 × 128 single-photon image sensor with on-pixel, 55 ps 10b time-to-digital converter, in IEEE International Solid-State Circuits Conference (2011) pp. 312-314Google Scholar
  17. 17.
    D. Stoppa, F. Borghetti, J. Richardson, R. Walker, L. Grant, R.K. Henderson, M. Gersbach, E. Charbon, “A 32 × 32-pixel array with in-pixel photon counting and arrival time measurement in the analog domain, in IEEE European Solid-State Device Conference (2009) pp. 204–207Google Scholar
  18. 18.
    R. J. Walker, J. R. Richardson, R. K. Henderson; A 128 × 96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13 μm CMOS imaging technology, IEEE International Solid-State Circuits Conference (2011) pp. 410–412Google Scholar
  19. 19.
    M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, Geiger-mode avalanche photodiode focal plane arrays for three-dimensional imaging LADAR. SPIE Infrared Remote Sens. Instrum. 7808 (2010)Google Scholar
  20. 20.
    B Aull, J. Burns, C. Chenson, B. Felton, H. Hanson, C. Keast, J. Knecht, A. Loomis, M. Renzi, A. Soares, S. Vyshnavi, K. Warner, D. Wolfson, D. Yost, D. Young, Laser radar imager based on 3D integration of geiger-mode avalanche photodiodes with two SOI timing circuit layers. IEEE Int. Solid-State Circuits Proc. 304–305 (2006)Google Scholar
  21. 21.
    C. Niclass, C. Favi, T. Kluter, F. Monnier, E. Charbon, Single-photon synchronous detection. IEEE J. Solid-State Circuits 44(7), 1977–1989 (2009)CrossRefGoogle Scholar
  22. 22.
    C. Niclass, M. Soga, S. Kato, A 0.18 μm CMOS single-photon sensor for coaxial laser rangefinders, in Asian Solid-State Circuits Conference (2010)Google Scholar
  23. 23.
    L. Pancheri, N. Massari, F. Borghetti, D. Stoppa, A 32 × 32 SPAD pixel array with nanosecond gating and analog readout, International Image Sensor Workshop (IISW), Hokkaido 8–11 June 2011Google Scholar
  24. 24.
    Mesa Imaging website,
  25. 25.
    PMD Technologies website,
  26. 26.
    SoftKinetic website,
  27. 27.
    T. Spirig, P. Seitz, O. Vietze, F. Heitger, The lock-in CCD two dimensional synchronous detection of light. IEEE J. Quantum Electron. 31, 1705–1708 (1995)CrossRefGoogle Scholar
  28. 28.
    R. Miyagawa, T. Kanade, CCD-based range-finding sensor. IEEE Trans. Electron Dev. 44(10), 1648–1652 (1997)CrossRefGoogle Scholar
  29. 29.
    S. Kawahito, I.A. Halin, T. Ushinaga, T. Sawada, M. Homma, Y. Maeda, A CMOS Time-Of-Flight range image sensor with gates-on-field-oxide structure. IEEE Sens. J. 7(12), 1578–1586 (2007)CrossRefGoogle Scholar
  30. 30.
    D. Van Nieuwenhove, W. Van Der Tempel, M. Kuijk, Novel standard CMOS detector using majority current for guiding photo-generated electrons towards detecting junctions, in Proceedings of IEEE/LEOS Symposium, Benelux Chapter, pp. 229–232 (2005)Google Scholar
  31. 31.
    W. van der Tempel, R. Grootjans, D. Van Nieuwenhove, M. Kuijk, A 1k-pixel 3-D CMOS sensor, in Proceedings of IEEE Sensors Conference (2008) pp. 1000–1003Google Scholar
  32. 32.
    G.-F. Dalla Betta, S. Donati, Q.D. Hossain, G. Martini, L. Pancheri, D. Saguatti, D. Stoppa, G. Verzellesi, Design and characterization of current-assisted photonic demodulators in 0.18-μm CMOS technology. IEEE Trans. Electron Dev. 58(6), 1702–1709 (2011)CrossRefGoogle Scholar
  33. 33.
    L. Pancheri, D. Stoppa, N. Massari, M. Malfatti, L. Gonzo, Q. D. Hossain, G.-F. Dalla Betta, A 120x160 pixel CMOS range image sensor based on current assisted photonic demodulators. in Proceedings of SPIE, vol. 7726 (SPIE Photonics Europe, Brussels, Belgium, 2010) pp. 772615Google Scholar
  34. 34.
    D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, L. Gonzo, A range image sensor based on 10-μm lock-in pixels in 0.18-μm CMOS imaging technology. IEEE J. Solid-State Circuits 46(1), 248–258 (2011)CrossRefGoogle Scholar
  35. 35.
    H.-J. Yoon, S. Itoh, S. Kawahito, A CMOS image sensor with in-pixel two-stage charge transfer for fluorescence lifetime imaging. IEEE Trans. Electron Dev. 56(2), 214–221 (2009)Google Scholar
  36. 36.
    L.-E. Bonjour, T. Baechler, M. Kayal, High-speed general purpose demodulation pixels based on buried photodiodes, in Proceedings of IISW 2011 (Hokkaido, June 8–11, 2011)Google Scholar
  37. 37.
    C. Tubert, L. Simony, F. Roy, A. Tournier, L. Pinzelli, P. Magnan, High speed dual port pinned-photodiode for Time-Of-Flight imaging, in Proceedings of IISW 2009 (Bergen, Norway, June 26–28, 2009)Google Scholar
  38. 38.
    H. Takeshita, T. Sawada, T. Iida, K. Yasutomi, S. Kawahito, High-speed charge transfer pinned-photodiode for a CMOS Time-Of-Flight range image sensor. Proc. SPIE 7536, 75360R (2010)Google Scholar
  39. 39.
    S.-J. Kim, J.D.K. Kim, S.-W. Han, B. Kang, K. Lee, C.-Y. Kim “A 640 × 480 image sensor with unified pixel architecture for 2D/3D imaging in 0.11 μm CMOS. IEEE Symp VLSI Circuits, 92–93 (2011)Google Scholar
  40. 40.
    R. Jeremias, W. Brockherde, G. Doemens, B. Hosticka, L. Listl, P. Mengel, A CMOS photosensor array for 3D imaging using pulsed laser. IEEE Int. Solid-State Circuits Conf. 252–253 (2001)Google Scholar
  41. 41.
    D. Stoppa, L. Viarani, A. Simoni, L. Gonzo, M. Malfatti and G. Pedretti, “A 50 × 30-pixel CMOS sensor for TOF-based Real Time 3D Imaging”, Workshop on Charge-Coupled Devices and Advanced Image Sensors, Karuizawa, Nagano, 2005Google Scholar
  42. 42.
    M. Perenzoni, N. Massari, D. Stoppa, L. Pancheri, M. Malfatti, L. Gonzo, A 160 × 120-pixels range camera with in-pixel correlated double sampling and fixed-pattern noise correction. IEEE J. Solid-State Circuits 46(7), 1672–1681 (2011)CrossRefGoogle Scholar
  43. 43.
    O. Sgrott, D. Mosconi, M. Perenzoni, G. Pedretti, L. Gonzo, D. Stoppa, A 134-pixel CMOS sensor for combined Time-Of-Flight and optical triangulation 3-D imaging. IEEE J. Solid-State Circuits 45(7), 1354–1364 (2010)CrossRefGoogle Scholar
  44. 44.
    K. Oberhauser, G. Zach, H. Zimmermann, Active bridge-correlator circuit with integrated PIN photodiode for optical distance measurement applications, in Proceedings of the 5th IASTED International Conference Circuits, Signals and Systems (July 2007) pp. 209–214Google Scholar
  45. 45.
    G. Zach, A. Nemecek, H. Zimmermann, Smart distance measurement line sensor with background light suppression and on-chip phase generation, in Proceedings of SPIE, Conference on Infrared Systems and Photoelectronic Technology III, vol. 7055 (Aug 2008) pp. 70550P1–70550P10Google Scholar
  46. 46.
    G. Zach, H. Zimmermann, A 2 × 32 range-finding sensor array wit pixel-inherent suppression of ambient light up to 120klx, in IEEE International Solid-State Circuits Conference (2009) pp. 352–353Google Scholar
  47. 47.
    G. Zach, M. Davidovic, H. Zimmermann, A 16 × 16 pixel distance sensor with in-pixel circuitry that tolerates 150 klx of ambient light. IEEE J. Solid-State Circuits 45(7), 1345–1353 (2010)CrossRefGoogle Scholar
  48. 48.
    C. Niclass, C. Favi, T. Kluter, M. Gersbach, E. Charbon, A 128 × 128 single-photon image sensor with column-level 10-bit time-to-digital converter array. IEEE J. Solid-State Circuits 43(12), 2977–2989 (2008)CrossRefGoogle Scholar
  49. 49.
    C. Niclass, M. Sergio, E. Charbon, A CMOS 64x48 single photon avalanche diode array with event-driven readout, in IEEE European Solid-State Circuit Conference (2006)Google Scholar
  50. 50.
    J.S. Massa, G.S. Buller, A.C. Walker, S. Cova, M. Umasuthan, A.M. Wallace, Time-pf-flight optical ranging system based on time-correlated single-photon counting. App. Opt. 37(31), 7298–7304 (1998)CrossRefGoogle Scholar
  51. 51.
    D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G.-F. Della Betta, A. Simoni, A CMOS 3-D imager based on single photon avalanche diode. IEEE Trans. Circuits Syst. 54(1), 4–12 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Politecnico di TorinoTurinItaly
  2. 2.Fondazione Bruno KesslerTrentoItaly

Personalised recommendations