The Impact of Mycorrhizosphere Bacterial Communities on Soil Biofunctioning in Tropical and Mediterranean Forest Ecosystems

  • Robin Duponnois
  • Ezékiel Baudoin
  • Jean Thioulouse
  • Mohamed Hafidi
  • Antoine Galiana
  • Michel Lebrun
  • Yves Prin
Chapter

Abstract

Mycorrhizal fungi constitute a key functional group of soil biota that greatly contribute to productivity and sustainability of terrestrial ecosystems. The benefits of mycorrhizal symbiosis to the host plant have usually been considered as a result of closed relationships between the host plant and the fungal symbiont. However, the extramatrical mycelium provides an increased area for interactions with other soil microorganisms by enhancing the development of the host plant root systems. Mycorrhizal fungi act as a bridge connecting the rhizosphere to the bulk soil and, through an active development of extraradical mycelium into the soil, this soil compartment (mycorrhizosphere) extends root–fungal interactions with soil microbial communities. Interactions within the mycorrhizosphere microbial community are of special interest because some microorganisms associated with mycorrhiza may complement mycorrhizal activities. The purpose of this chapter is to outline the mycorrhizosphere interactions between ectomycorrhizal fungi associated with forest tree species and soil microflora of potentially synergistic properties that lead to stimulation of plant growth. By focussing on the ectomycorrhizal symbiosis associated with Tropical and Mediterranean tree species, we will review the global effects of ectomycorrhizal symbiosis on the functional diversity of soil microflora and in particular, the interactions between ectomycorrhizal fungi and some plant-growth-promoting rhizobacteria. This review will focus on the interactions between ectomycorrhizal fungi and soil microflora leading to a sustainable microbial complex ecosystem with high efficiency against phosphorus mobilization and transferring phosphorus from the soil organic matter or from soil minerals to the host plant.

Keywords

Arbuscular Mycorrhizal Fungus Mycorrhizal Fungus Soil Microbial Community Arbuscular Mycorrhiza Fluorescent Pseudomonad 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abuzinadah RA, Read DJ (1989) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. V. Nitrogen transfer in birch (Betula pendula) grown in association with mycorrhizal and non-mycorrhizal fungi. New Phytol 112:61–68CrossRefGoogle Scholar
  2. Allen EB, Allen MF, Helm DJ, Trappe JM, Molina R, Rincon E (1995) Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil 170:47–62CrossRefGoogle Scholar
  3. Artursson V, Finlay RD, Jansson JK (2005) Combined bromodeoxyuridine immunocapture and terminal restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species. Environ Microbiol 7:1952–1966PubMedCrossRefGoogle Scholar
  4. Assigbetse K, Gueye M, Thioulouse J, Duponnois R (2005) Soil bacterial diversity responses to root colonization by an ectomycorrhizal fungus are not root-growth dependent. Microb Ecol 50:350–359PubMedCrossRefGoogle Scholar
  5. Barker WW, Welch SA, Banfield JF (1997) Biogeochemical weathering of silicate minerals. In: Banfield JF, Nealson KH (eds) Geomicrobiology: interactions between microbes and minerals. Mineralogical Society of America, Washington, pp 391–428Google Scholar
  6. Barker WW, Welch SA, Chu S, Banfield JF (1998) Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Mineral 83:1551–1563Google Scholar
  7. Bending GD, Read DJ (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. Foraging behaviour and translocation of nutrients from exploited litter. New Phytol 130:401–409CrossRefGoogle Scholar
  8. Bernard M, Mouyna I, Dubreucq G, Debeaupuis JP, Fontaine T, Vorgias C, Fuglsang C, Latge JP (2002) Characterization of a cell wall acid phosphatase (PhoAp) in Aspergillus fumigatus. Microbiology 148:2819–2829PubMedGoogle Scholar
  9. Boyce A, Walsh G (2007) Purification and characterisation of an acid phosphatase with phytase activity from Mucor hiemalis Wehmer. J Biotechnol 132:82–87PubMedCrossRefGoogle Scholar
  10. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304CrossRefGoogle Scholar
  11. Coello P (2002) Purification and characterization of secreted acid phosphatase in phosphorus deficient Arabidopsis thaliana. Physiol Plantarum 116:293–298CrossRefGoogle Scholar
  12. Cornet F, Diem HG (1982) Etude comparative de l’efficacité des souches de Rhizobium d’Acacia isolées de sols du Sénégal et effet de la double symbiose RhizobiumGlomus mosseae sur la croissance de Acacia holosericea et A. raddiana. Bois et Forêts des Tropiques 198:3–15Google Scholar
  13. Courty PE, Buée M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpeau MP, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42:679–698CrossRefGoogle Scholar
  14. Criquet S, Ferre E, Farnet AM, Le Petit J (2004) Annual dynamics of phosphatase activities in an overgreen oak litter, influence of biotic and abiotic factors. Soil Biol Biochem 36:1111–1118CrossRefGoogle Scholar
  15. Degens BP, Harris JA (1997) Development of a physiological approach to measuring the catabolic diversity of soil microbial communities. Soil Biol Biochem 29:1309–1320CrossRefGoogle Scholar
  16. Degens BD, Vojvodic-Vukovic M (1999) A sampling strategy to assess the effects of land use on microbial functional diversity in soils. Aust J Soil Res 37:593–601Google Scholar
  17. Degens BP, Schipper LA, Sparling GP, Vojvodic-Vukovic M (2000) Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biol Biochem 32:189–196CrossRefGoogle Scholar
  18. Degens BP, Schipper LA, Sparling GP, Duncan LC (2001) Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance? Soil Biol Biochem 33:1143–1153CrossRefGoogle Scholar
  19. Dighton J, Poskitt JM, Brown TK (1993) Phosphate influx into ectomycorrhizal and saprotrophic fungal hyphae in relation to phosphate supply; a potential method for selection of efficient mycorrhizal species. Mycol Res 97:355–358CrossRefGoogle Scholar
  20. Drever JI (1994) The effect of land plants on weathering rates of silicate minerals. Geochim Cosmochim Acta 58:2325–2332CrossRefGoogle Scholar
  21. Drever JI, Vance GF (1994) Role of soil organic acids in mineral weathering processes. In: Lewan MD, Pittman ED (eds) The role of organic acids in geological processes. Springer, Heidelberg, pp 138–161CrossRefGoogle Scholar
  22. Duponnois R, Plenchette C (2003) A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza 13:85–91PubMedCrossRefGoogle Scholar
  23. Duponnois R, Founoune H, Lesueur D, Thioulouse J, Neyra M (2000) Ectomycorrhization of six Acacia auriculiformis provenances from Australia, Papua New Guinea and Senegal in glasshouse conditions: effect on the plant growth and on the multiplication of plant parasitic nematodes. Aust J Exp Agric 40:443–450CrossRefGoogle Scholar
  24. Duponnois R, Founoune H, Lesueur D (2002) Influence of controlled dual ectomycorrhizal and rhizobial symbiosis on the growth of Acacia mangium provenances, the indigenous symbiotic microflora and the structure of plant parasitic nematode communities. Geoderma 109:85–102CrossRefGoogle Scholar
  25. Duponnois R, Founoune H, Masse D, Pontanier R (2005) Inoculation of Acacia holosericea with ectomycorrhizal fungi in a semi-arid site in Senegal: growth response and influences on the mycorrhizal soil infectivity. For Ecol Manage 207:351–362CrossRefGoogle Scholar
  26. Duponnois R, Plenchette C, Prin Y, Ducousso M, Kisa M, Bâ AM, Galiana A (2007) Use of mycorrhizal inoculation to improve reafforestation process with Australian Acacia in Sahelian ecozones. Ecol Eng 29:105–112CrossRefGoogle Scholar
  27. Founoune H, Duponnois R, Meyer JM, Thioulouse J, Masse D, Chotte JL, Neyra M (2002a) Interactions between ectomycorrhizal symbiosis and fluorescent pseudomonads on Acacia holosericea: isolation of mycorrhization helper bacteria (MHB) from a Soudano-Sahelian soil. FEMS Microbiol Ecol 41:37–46PubMedCrossRefGoogle Scholar
  28. Founoune H, Duponnois R, Bâ AM (2002b) Ectomycorrhization of Acacia mangium, Willd. and Acacia holosericea, A. Cunn. Ex G. Don in Senegal. Impact on plant growth, populations of indigenous symbiotic microorganisms and plant parasitic nematodes. J Arid Environ 50:325–332CrossRefGoogle Scholar
  29. Founoune H, Duponnois R, Bâ AM, Sall S, Branget I, Lorquin J, Neyra M, Chotte JL (2002c) Mycorrhiza helper bacteria stimulate ectomycorrhizal symbiosis of Acacia holosericea with Pisolithus alba. New Phytol 153:81–89CrossRefGoogle Scholar
  30. Frey P, Frey-Klett P, Garbaye J, Berge O, Heulin T (1997) Metabolic and genotypic fingerprinting of fluorescent pseudomonads associated with the Douglas fir – Laccaria bicolor mycorrhizosphere. Appl Microbiol Environ 63:1852–1860Google Scholar
  31. Frey-Klett P, Chavatte M, Clausse ML, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat JP, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328PubMedCrossRefGoogle Scholar
  32. Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92PubMedCrossRefGoogle Scholar
  33. Garbaye J (1991) Biological interactions in the mycorrhizosphere. Experientia 47:370–375CrossRefGoogle Scholar
  34. Garbaye J, Bowen GD (1987) Effect of different microflora on the success of mycorrhizal inoculation of Pinus radiata. Can J For Res 17:941–943CrossRefGoogle Scholar
  35. Garbaye J, Bowen GD (1989) Ectomycorrhizal infection of Pinus radiata by Rhizopogon luteolus is stimulated by microorganisms naturally present in the mantle of ectomycorrhizas. New Phytol 112:383–388CrossRefGoogle Scholar
  36. Garcia C, Hernandez T, Roldan A, Albaladejo J (1997) Biological and biochemical quality of a semi-arid soil after induced revegetation. J Environ Qual 26:1116–1122CrossRefGoogle Scholar
  37. Goldstein AH, Baertlein DA, McDaniel RG (1988) Phosphate starvation inducible metabolism in Lycopersicon esculentum. 1. Excretion of acid phosphatase by tomato plants and suspension cultured cells. Plant Physiol 87:711–715PubMedCrossRefGoogle Scholar
  38. Grayston SJ, Campbell CD, Vaughan D (1994) Microbial diversity in the rhizospheres of different tree species. In: Pankhurst CE (ed) Soil biota: management in sustainable farming systems. CSIRO, Adelaide, pp 155–157Google Scholar
  39. Haas H, Redl B, Friedlin E, Stöffler G (1992) Isolation and analysis of the Penicillium chrysogenum phoA gene encoding a secreted phosphate-repressible acid phosphatase. Gene 113:129–133PubMedCrossRefGoogle Scholar
  40. Hiltner L (1904) Uber neurer erfahrungen und probleme auf dem gebiete der bodenbakteriologie unter besonderer berücksichtigung der gründüngung und brache. Arbeiten der Deitschen Landwirtshaftlichen Geserllshaft 98:59–78Google Scholar
  41. Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol Biochem 24:389–395CrossRefGoogle Scholar
  42. Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13PubMedCrossRefGoogle Scholar
  43. Joner EJ, Johansen A (2000) Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycol Res 104:81–86CrossRefGoogle Scholar
  44. Kennedy AC, Smith KL (1995) Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170:75–86CrossRefGoogle Scholar
  45. Kim KY, Jordan D, McDonald GA (1997) Effect of solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26:79–87CrossRefGoogle Scholar
  46. Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal mobilize nutrients from minerals. Trends Ecol Evol 16:248–253PubMedCrossRefGoogle Scholar
  47. Leake JR, Johnson D, Donnelly DP, Muckle GE, Boddy L, Read DJ (2004) Networks of power and influence: the role of mycorrhized mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045CrossRefGoogle Scholar
  48. Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78:366–371Google Scholar
  49. Louche J, Ali MA, Cloutier-Hurteau B, Sauvage FX, Quiquampoix H, Plassard C (2010) Efficiency of acid phosphatase secreted from ectomycorrhizal fungus Hebeloma cylindrosporum to hydrolyse organic phosphorus in podzols. FEMS Microbiol Ecol 73:323–335PubMedGoogle Scholar
  50. Lynch JM (1990) Introduction: some consequences of microbial rhizosphere competence for plant and soil. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester, pp 1–10Google Scholar
  51. Muthukumar T, Udaiyan K, Rajeshkannan V (2001) Response of neem (Azadirachta indica A. Juss) to indigenous arbuscular mycorrhizal fungi, phosphate-solubilizing and asymbiotic nitrogen-fixing bacteria under tropical nursery conditions. Biol Fertil Soils 34:417–426Google Scholar
  52. Nahas E, Terenzi HF, Rossi A (1982) Effects of carbon source and pH on the production and secretion of acid phosphatase (EC 3.1.3.2) and alkaline phosphatase (EC 3.1.3.1) in Neurospora crassa. J Gen Microbiol 128:2017–2021Google Scholar
  53. Ochs M (1996) Influence of humified and non-humified natural organic compounds on mineral dissolution. Chem Geol 132:119–124CrossRefGoogle Scholar
  54. Ouahmane L, Revel JC, Hafidi M, Thioulouse J, Prin Y, Galiana A, Dreyfus B, Duponnois R (2009) Responses of Pinus halepensis growth, microbial soil functionalities and phosphate-solubilizing bacteria after rock phosphate amendment and ectomycorrhizal inoculation. Plant Soil 320:169–179CrossRefGoogle Scholar
  55. Palacios MC, Haros M, Rosell CM, Sanz Y (2005) Characterization of an acid phosphatase from Lactobacillus pentosus: regulation and biochemical properties. J Appl Microbiol 98:229–237PubMedCrossRefGoogle Scholar
  56. Paris F, Botton B, Lapeyrie F (1996) In vitro weathering of phlogopite by ectomycorrhizal fungi. 2. Effect of K + and Mg 2+ deficiency and N sources on accumulation of oxalate and H+. Plant Soil 179:141–150CrossRefGoogle Scholar
  57. Quiquampoix H, Mousain D (2005) Enzymatic hydrolysis of organic phosphorus. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CAB International, Wallingford, pp 89–112CrossRefGoogle Scholar
  58. Ramanankierana N, Rakotoarimanga N, Thioulouse J, Kisa M, Randrianjohanny E, Ramaroson L, Duponnois R (2006) The ectomycorrhizosphere effect influences functional diversity of soil microflora. Int J Soil Sci 1:8–19CrossRefGoogle Scholar
  59. Ramanankierana N, Ducousso M, Rakotoarimanga N, Prin Y, Thioulouse J, Randrianjohany E, Ramaroson L, Kisa M, Galiana A, Duponnois R (2007) Arbuscular mycorrhizas and ectomycorrhizas of Uapaca bojeri L. (Euphorbiaceae): sporophore diversity, patterns of root colonization and effects on seedling growth and soil microbial catabolic diversity. Mycorrhiza 17:195–208PubMedCrossRefGoogle Scholar
  60. Rambelli A (1973) The rhizosphere of mycorrhizae. In: Marks GL, Koslowski TT (eds) Ectomycorrhizae. Academic, New York, pp 299–343Google Scholar
  61. Rao MA, Gianfreda L, Palmiero F, Violante A (1996) Interactions of acid phosphatase with clays, organic molecules and organic mineral complexes. Soil Sci 161:751–760CrossRefGoogle Scholar
  62. Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytol 157:475–492CrossRefGoogle Scholar
  63. Read DJ, Duckett JG, Francis R, Ligrone R, Russell A (2000) Symbiotic fungal associations in “lower” land plants. Philos Trans R Soc Lond B Biol Sci 355:815–830PubMedCrossRefGoogle Scholar
  64. Remigi P, Faye A, Kane A, Deruaz M, Thioulouse J, Cissoko M, Prin Y, Galiana A, Dreyfus B, Duponnois R (2008) The exotic legume tree species Acacia holosericea alters microbial soil functionalities and the structure of the Arbuscular mycorrhizal community. Appl Environ Microbiol 74:1485–1493PubMedCrossRefGoogle Scholar
  65. Requena N, Perez-Solis E, Azcon-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498PubMedCrossRefGoogle Scholar
  66. Schipper LA, Degens BP, Sparling GP, Duncan LC (2001) Changes in microbial heterotrophic diversity along five plant successional sequences. Soil Biol Biochem 33:2093–2103CrossRefGoogle Scholar
  67. Schreiner RP, Mihara KL, McDaniel KL, Bethlenfalvay GJ (2003) Mycorrhizal fungi influence plant and soil functions and interactions. Plant Soil 188:199–209CrossRefGoogle Scholar
  68. Senghor K (1998) Etude de l’incidence du nématode phytoparasite Meloidogyne javanica sur la croissance et la symbiose fixatrice d’azote de douze espèces d’Acacia (africains et australiens) et mise en évidence du rôle des symbiotes endo et ectomycorhiziens contre ce nématode. Doctoral thesis. University of Chekh Anta Diop, DakarGoogle Scholar
  69. Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent, function and importance. Can J Bot 82:1140–1165CrossRefGoogle Scholar
  70. Smith S, Read J (2008) Mycorrhizal symbiosis (Ed. Hardcover). Academic Press. 800 p.Google Scholar
  71. Sparling GP, Schipper LA, Hewitt AE, Degens BP (2000) Resistance to cropping pressure of two New Zealand soils with contrasting mineralogy. Aust J Soil Res 38:85–100CrossRefGoogle Scholar
  72. Timonen S, Marschner P (2006) Mycorrhizosphere concept. In: Mukerjii KG, Manoharachary C, Singh J (eds) Soil biology. Springer, Berlin, pp 155–172Google Scholar
  73. Toro M, Azcon R, Barea JM (1996) The use of isotropic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. New Phytol 138:265–273CrossRefGoogle Scholar
  74. Toro M, Azcón R, Barea JM (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412PubMedGoogle Scholar
  75. Valentine LL, Fieldler TL, Hart AA, Petersen CA, Berninghausen HK, Southworth D (2004) Diversity of ectomycorrhizas associated with Quercus garryana in southern Oregon. Can J Bot 82:123–135CrossRefGoogle Scholar
  76. van der Hejden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  77. Van Schöll L, Smits MM, Hoffland E (2006) Ectomycorrhizal weathering of the soil minerals muscovite and hornblende. New Phytol 171:805–814PubMedCrossRefGoogle Scholar
  78. Wallander H, Mahmood S, Hagerberg D, Johansson L (2003) Elemental composition of ectomycorrhizal mycelia identified by PCR-RFLP analysis and grown in contact with apatite or wood ash in forest soil. FEMS Microbiol Ecol 44:57–65PubMedGoogle Scholar
  79. Weber RWS, Pitt D (1997) Purification, characterization and exit routes of two acid phosphatases secreted by Botrytis cinerea. Mycol Res 101:1431–1439CrossRefGoogle Scholar
  80. Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227CrossRefGoogle Scholar
  81. Wyss M, Brugger R, Kroenberger A, Remy R, Fimbel R, Osterhelt G, Lehmann M, van Loon A (1999) Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl Environ Microbiol 65:367–373PubMedGoogle Scholar
  82. Yoshida H, Oikawa S, Ikeda M, Reese ET (1989) A novel acid-phosphatase excreted by Penicillium funiculosum that hydrolyzes both phosphodiesters and phospho- monoesters with aryl leaving groups. J Biochem 105:794–798PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Robin Duponnois
    • 1
    • 2
  • Ezékiel Baudoin
    • 1
    • 2
  • Jean Thioulouse
    • 3
    • 4
  • Mohamed Hafidi
    • 2
  • Antoine Galiana
    • 5
  • Michel Lebrun
    • 1
    • 2
  • Yves Prin
    • 5
  1. 1.IRD, UMR 113 CIRAD/INRA/IRD/SUP-AGRO/UM2, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM)Montpellier Cedex 5France
  2. 2.Laboratoire Ecologie & Environnement (Unité associée au CNRST, URAC 32), Faculté des Sciences SemlaliaUniversité Cadi AyyadMarrakechMarocco
  3. 3.Université de LyonLyonFrance
  4. 4.CNRS, UMR5558, Laboratoire de Biométrie et Biologie EvolutiveUniversité Lyon 1VilleurbanneFrance
  5. 5.CIRAD, UMR 113 CIRAD/INRA/IRD/SUP-AGRO/UM2, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM)Montpellier Cedex 5France

Personalised recommendations