Contribution of N2 Fixation for the World Agriculture

  • André Luís Braghini Sá
  • Armando Cavalcante Franco Dias
  • Manoel de Araújo Teixeira
  • Rosana Faria Vieira


Plant production of high quality as well as the availability of foods rich in protein is crucially dependent on nitrogen. Tropical agricultural soils often have impaired production due to limited availability of nitrogen, which leads to use of nitrogen fertilizers and alternative resources such as biological nitrogen fixation (BNF). The latter has been used especially in grasses of economic importance, and this fact has initiated an important search in understanding these mechanisms in nonleguminous plants. Nitrogen-fixing bacteria such as rhizobia in turn aroused interest for research into new microbial sources such as nitrogen-fixing endophytic bacteria and not forming nodules. The mechanisms of BFN have grown exponentially and alternative sources to carry out the process increasingly investigated.


Nitrogen Fixation Endophytic Bacterium Diazotrophic Bacterium Produce Growth Hormone Commercial Inoculant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bai Y, Dáoust F, Smith DL, Driscoll BT (2002) Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can J Microbiol 48:230–238PubMedCrossRefGoogle Scholar
  2. Bautista VV, Monsalud RG, Yokota A (2010) Devosia yakushimensis sp. nov., isolated from root nodules of Pueraria lobata (Willd.) Ohwi. Int J Syst Evol Microbiol 60:627–632PubMedCrossRefGoogle Scholar
  3. Boeiro L, Perrig D, Masciarellio O, Penna C, Cassán F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechonol 74:874–880CrossRefGoogle Scholar
  4. Burdman S, Vedder D, German M, Itzigsohn R, Kigel J, Jurkevitch E, Okon Y (1998) Legume crop yield promotion by inoculation with Azospirillum. In: Elmerich C, Kondorosi A, Newton WE (eds) Biological nitrogen fixation for 21st century, Proceedings of the 11th International Congress on Nitrogen Fixation, Paris. 1997. Kluwer Academic Publishers, Dordrecht, Boston, London, p 609Google Scholar
  5. Caballero-Melado J, Martínez-Aguilar L, Paredes-Valdez G, de Los E, Santos P (2004) Brkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol 54:1165–1172CrossRefGoogle Scholar
  6. Camacho M, Santamaría C, Temprano F, Rodriguez-Navarro DN, Daza A (2001) Co-inoculation with Bacillus sp. CECT 450 improves nodulation in Phaseolus vulgaris L. Can J Microbiol 47:1058–1062PubMedGoogle Scholar
  7. Chen WM, Faria SM, James EK, Elliot GN, Lin KY, Chou JH, Sheu SY, Cnockaert M, Sprent JI, Vandamme P (2007) Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int J Syst Evol Microbiol 57:1055–1059PubMedCrossRefGoogle Scholar
  8. Chen WM, Faria SM, Chou JH (2008) Burkholderia sabiae sp nov., isolated from root nodules of Mimosa caesalpiniifolia. Int J Syst Evol Microbiol 58:2174–2179PubMedCrossRefGoogle Scholar
  9. Chen WM, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M, Vandamme P (2001) Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735PubMedCrossRefGoogle Scholar
  10. Clayton GW, Rice WA, Lupwayi NZ, Johnston AM, Lafond GP, Grant CA, Walley F (2004) Inoculant formulation and fertilizer nitrogen effects on field pea: crop yield and seed quality. Can J Plant Sci 84:89–96CrossRefGoogle Scholar
  11. Denton MD, Pearce DJ, Ballard RA, Hannah MC, Mutch LA, Norng S, Slattery JF (2009) A multi-site field evaluation of granular inoculants for legume nodulation. Soil Biol Biochem 41:2508–2516CrossRefGoogle Scholar
  12. Dobbelare S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149CrossRefGoogle Scholar
  13. Ferreira MC, Andrade DS, Chueire LMO, Takemura SM, Hungria M (2000) Tillage method and crop rotation effects on the population sizes and diversity of bradyrhizobia nodulating soybean. Soil Biol Biochem 32:627–637CrossRefGoogle Scholar
  14. Gan Y, Hanson KG, Zentner RP, Selles F, McDonald CL (2005) Response of lentil to microbial inoculation and low rates of fertilization in the semiarid Canadian prairies. Can J Plant Sci 85:847–855CrossRefGoogle Scholar
  15. Garau G, Yates RJ, Deiana P, Howieson JG (2009) Novel strains of nodulating Burkholderia have a role in nitrogen fixation with papilionoid herbaceous legumes adapted to acid, infertile soils. Soil Biol Biochem 41:125–134CrossRefGoogle Scholar
  16. Goel AK, Sindhu SS, Dadarwal KR (2002) Stimulation of nodulation and plant growth of chickpea (Cicer arietinum L.) by Pseudomonas spp. antagonistic to fungal pathogens. Biol Fertil Soil 36:391–396CrossRefGoogle Scholar
  17. Graham PH (1981) Some problems of nodulation and symbiotic nitrogen fixation in Phaseolus vulgaris L.: a review. Field Crop Res 4:93–112CrossRefGoogle Scholar
  18. Gu CT, Wang ET, Tian CF, Han TX, Chen WF, Sui XH, Chen WX (2008) Rhizobium miluonense sp. nov., a symbiotic bacterium isolated from Lespedeza root nodules. Int J Syst Evol Microbiol 58:1364–1368PubMedCrossRefGoogle Scholar
  19. Han TX, Wang ET, Wu LJ, Chen WF, Gu JG, Gu CT, Tian CF, Chen WX (2008) Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China. Int J Syst Evol Microbiol 58:1693–1699PubMedCrossRefGoogle Scholar
  20. Hartley EJ, Gemmell LG, Slattery JF, Howieson JG, Herridge DF (2005) Age of peat-based lupin and chickpea inoculants in relating to quality and efficacy. Aust J Exp Agric 45:183–188CrossRefGoogle Scholar
  21. Hungria M, Andrade DS, Chueire LMO, Probanza A, Guttierrez-Manero FJ, Megias M (2000) Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol Biochem 32:1515–1528CrossRefGoogle Scholar
  22. James EK, Olivares FL (1998) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17:77–119CrossRefGoogle Scholar
  23. Lambrecht M, OkonY VBA, Vanderleyden J (2000) Indole-3-acetic: reciprocal signaling molecule in bacterial-plant interactions. Trends Microbiol 8:298–300PubMedCrossRefGoogle Scholar
  24. Lin X, Shi JF, Zhao P, Chen WM, Qin W, Tang M, Wei GH (2011) Rhizobium sphaerophysae sp. nov., a novel species isolated from root nodules of Sphaerophysa salsula in China. Antonie Van Leeuwenhoek 99:845–854CrossRefGoogle Scholar
  25. Lloret L, Ormeño-Orrillo E, Rincón-Rosales R, Martínez-Romero J, Rogel-Hernández MA, Martínez-Romero E (2007) Ensifer mexicanum sp. nov. a new species nodulating Acacia angustissima (Mill.) Kuitze in Mexico. Syst Appl Microbiol 30:280–290PubMedCrossRefGoogle Scholar
  26. Ma W, Charles TC, Glick BR (2006) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 70:5891–5897CrossRefGoogle Scholar
  27. Michielis J, Dombrecht B, Vermeiren N, Xi C, Luyten E, Vanderleyden J (1998) Phaseolus vulgaris is a non-selective host for nodulation. FEMS Microbiol Ecol 26:193–205CrossRefGoogle Scholar
  28. Mnasri B, Aouani ME, Mhamdi R (2007) Nodulation and growth of common bean (Phaseolus vulgaris) under water deficiency. Soil Biol Biochem 39:1744–1750CrossRefGoogle Scholar
  29. Moreira FMS, Cruz LM, Faria SM, Marsht T, Martinez-Romero E, Pedrosa FO, Pitard R, Young PJW (2006) Azorhizobium doebereinerae sp. nov. microsymbiont of Sesbania virgata (Caz.) Pers. Syst Appl Microbiol 29:197–206CrossRefGoogle Scholar
  30. Mostasso L, Mostasso FL, Dias BG, Vargas MAT, Hungria M (2001) Selection of beans (Phaseolus vulgaris L.) rhizobial strains for the Brazilian cerrado. Field Crop Res 73:121–132CrossRefGoogle Scholar
  31. Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 411:948–950PubMedCrossRefGoogle Scholar
  32. Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546PubMedCrossRefGoogle Scholar
  33. Oliveira ALM, Canuto EL, Urquiaga S, Reis VM, Baldani JI (2006) Yield of micropropagated sugarcane varieties in diferent soil types following inoculation with diazotrophic bacteria. Plant Soil 284:23–32CrossRefGoogle Scholar
  34. Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid: a review. Can J Microbiol 42:207–220PubMedCrossRefGoogle Scholar
  35. Peix A, Rivas-Boyero AA, Mateos PF, Rodríguez-Barrueco C, Martínez-Molina E, Velázquez E (2000) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110CrossRefGoogle Scholar
  36. Peng G, Wang H, Zhang G, Hou W, Liu Y, Wang ET, Tan Z (2006) Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. Int J Syst Evol Microbiol 56:1263–1271PubMedCrossRefGoogle Scholar
  37. Perin L, Martínez-Aguilar L, Paredes-Valdez G, Baldani JI, Estrada-de Los Santos P, Reis VM, Caballero-Mellado J (2006) Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize. Int J Syst Evol Microbiol 56:1931–1937PubMedCrossRefGoogle Scholar
  38. Rahman MM, Sengupta MK, Chowdhury UK, Lodh D, Das B, Ahamed S, Mandal D, Hossain A, Mukherjee SC, Pati S, Saha KC, Chakraborti D (2006) Arsenic contamination incidents around the world. In: Naidu R, Smith E, Owens G, Bhattacharya P, Nadebaum P (eds) Managing arsenic in the environment. From soil to human health. CSIRO, Collingwood, VIC, pp 3–30Google Scholar
  39. Ramíres-Bahena MH, Peix A, Rivas R, Camacho M, Rodriguez-Navarro DN, Mateos PF, Martínez-Molina E, Willems A, Velázquez E (2009) Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus. Int J Syst Evol Microbiol 59:1929–1934CrossRefGoogle Scholar
  40. Reichman SM (2007) The potential use of the legume–rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biol Biochem 39:2587–2593CrossRefGoogle Scholar
  41. Reis VM, Estrada-de Los Santos P, Tenorio-Salgado S, Vogel J, Stoffels M, Guyon S, Mavingui P, Baldani VLD, Schmidt M, Baldani JI, Balandreau J, Hartmann A, Caballero-Mellado J (2004) Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 54:2155–2162PubMedCrossRefGoogle Scholar
  42. Rincón-Rosales R, Lloret L, Lloret L, Ponce E, Martínez-Romero E (2008) Rhizobia with different symbiotic efficiencies nodulate Acaciella angustissima in Mexico, including Sinorhizobium chiapanecum sp. nov. which has common symbiotic genes with Sinorhizobium mexicanum. FEMS Microbiol Ecol 67:103–117CrossRefGoogle Scholar
  43. Soares ALL, Pereira JPAR, Ferreira PAA, Vale HMM, Lima AS, Andrade MJB, Moreira FMS (2006) Eficiência agronômica de rizóbios selecionadosGoogle Scholar
  44. Tarrand JJ, Krieg NR, Döbereiner J (1978) A taxonomic study of Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 8:967–980CrossRefGoogle Scholar
  45. Tejera N, Lluch C, Martínez-Toledo MV, González-Lopez J (2005) Isolation and characterization of Azotobacter and Azospirillum strains from the sugarcane rhizosphere. Plant Soil 270:223–232CrossRefGoogle Scholar
  46. Tian CF, Wang ET, Wu LJ (2008) Rhizobium fabae sp nov., a bacterium that nodulates Vicia faba. Int J Syst Evol Microbiol 58:2871–2875PubMedCrossRefGoogle Scholar
  47. Trinick MJ (1979) Structure of nitrogen-fixing nodules formed by Rhizobium on roots of Parasponia andersonii. Can J Microbiol 25:565–578PubMedCrossRefGoogle Scholar
  48. Urquiaga S, Cruz KHS, Boddey RM (1992) Contribution of nitrogen fixation to sugar cane: 15 N and nitrogen balance estimates. Soil Sci Soc Am J 56:105–111CrossRefGoogle Scholar
  49. Valverde A, Velázquez E, Fernández-Santos F, Vizcaíno N, Rivas R, Mateos PF, Martínez-Molina E, Igual JM, Willens A (2005) Phyllobacterium trifolli sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55:1985–1989PubMedCrossRefGoogle Scholar
  50. Valverde A, Igual JM, Peix A, Cervantes E, Velázquez E (2006) Rhizobium lusitanum sp. nov., a bacterium that nodulates Phaseolus vulgaris. Int J Syst Evol Microbiol 56:2631–2637PubMedCrossRefGoogle Scholar
  51. Vandamme P, Goris J, Chen WM (2002) Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 25:507–512PubMedCrossRefGoogle Scholar
  52. Vargas MAT, Hungria M (1997) Fixação biológica do N2 na cultura da soja. In: Vargas MAT, Hungria M (eds) Biologia dos Solos de Cerrados EMBRAPA-CPAC, Planaltina, pp 297–360Google Scholar
  53. Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant-growth-promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141PubMedCrossRefGoogle Scholar
  54. Voss M, Sidiras N (1985) Nodulaçáo da soja em plantio direto em comparação com plantio convencional. Pesquisa Agropecuária Brasileira 20:775–782Google Scholar
  55. Wang FQ, Wang ET, Liu J, Chen Q, Sui XH, Chen WF, Chen WX (2007) Mesorhizobium albiziae sp. nov., a novel bacterium that nodulates Albizia kalkora in a subtropical region of China. Int J Syst Evol Microbiol 57:1192–1199PubMedCrossRefGoogle Scholar
  56. Xie CH, Yokota A (2005) Azospirillum oryzae sp nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa. Int J Syst Evol Microbiol 55:1435–1438PubMedCrossRefGoogle Scholar
  57. Xie CH, Yokota A (2006) Sphingomonas azotifigens sp nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa. Int J Syst Evol Microbiol 56:889–893PubMedCrossRefGoogle Scholar
  58. Zhang RJ, Hou BC, Wang ET, Li Y, Zhang XX, Chen WX (2011) Rhizobium tubonense sp. nov., isolated from root nodules of Oxytropis glabra. Int J Syst Evol Microbiol 61:512–517PubMedCrossRefGoogle Scholar
  59. Zurdo-Piñero JL, Rivas R, Trujillo ME, Vizcaino N, Carrasco JA, Chamber M, Palomares A, Mateos PF, Martínez-Molina E, Velázquez E (2007) Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 57:784–788CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • André Luís Braghini Sá
    • 1
  • Armando Cavalcante Franco Dias
    • 2
  • Manoel de Araújo Teixeira
    • 1
  • Rosana Faria Vieira
    • 3
  1. 1.Laboratory of Applied MicrobiologyUniversity of Vale do Sapucaí – UNIVASPouso AlegreBrazil
  2. 2.Center for Nuclear Energy in AgricultureUniversity of São Paulo, CENA/USPSão PauloBrazil
  3. 3.Laboratory of Environmental MicrobiologyCNPMA - Embrapa Meio AmbienteSão PauloBrazil

Personalised recommendations