Arabidopsis as a Model System to Decipher the Diversity and Complexity of Plant Responses to Plant-Growth-Promoting Rhizobacteria

  • Guilhem Desbrosses
  • Fabrice Varoquaux
  • Bruno Touraine
Chapter

Abstract

The mechanisms involved in the stimulation of plant growth by plant-growth-promoting rhizobacteria (PGPR) remained obscure until the very end of twentieth century. In the last decade, investigations on the plant partner of plant–PGPR interaction have begun to unveil the diversity and complexity of mechanisms behind growth promotion. These studies that used the model plant Arabidopsis to identify plant signaling pathways modulated by PGPR provide new paradigms on how rhizobacteria modify plant development and nutrition. This chapter presents insights on PGPR-elicited developmental and nutritional regulations that have been obtained. Overall, the emerging picture is the concomitant elicitation of a variety of regulatory mechanisms that only begin to be identified as mediators of plant responses. It leaves large gaps in our knowledge, especially on primary PGPR targets and molecular events linking PGPR with individual plant regulatory pathways, and on the integration of these regulations within a probably complex cross talk network.

Keywords

Glycine Betaine Arabidopsis Seedling Induce Systemic Resistance Root System Architecture Lateral Root Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abeles FB, Morgan PW, Salveit MEJ (1992) Ethylene in plant biology, 2nd edn. Academic, San Diego, CA, p 414Google Scholar
  2. Babalola O (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570PubMedCrossRefGoogle Scholar
  3. Barbieri P, Galli E (1993) Effect on wheat root development of inoculation with an Azospirillum brasilense mutant with altered indole-3-acetic acid production. Res Microbiol 144:69–75PubMedCrossRefGoogle Scholar
  4. Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577PubMedCrossRefGoogle Scholar
  5. Benjamins R, Scheres B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59:443–465PubMedCrossRefGoogle Scholar
  6. Berthomieu P, Conejero G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Very A-A, Sentenac H, Casse F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014PubMedCrossRefGoogle Scholar
  7. Bertrand H, Plassard C, Pinochet X, Touraine B, Normand P, Cleyet-Marel J-C (2000) Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Can J Bot 46:229–236Google Scholar
  8. Bertrand H, Nalin R, Bally R, Cleyet-Marel J-C (2001) Isolation and identification of the most efficient plant growth-promoting bacteria associated with canola (Brassica napus). Biol Fertil Soils 33:152–156CrossRefGoogle Scholar
  9. Blaha D, Prigent-Combaret C, Mirza MS, Moenne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470PubMedCrossRefGoogle Scholar
  10. Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18PubMedCrossRefGoogle Scholar
  11. Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobia. Curr Opin Plant Biol 4:343–350PubMedCrossRefGoogle Scholar
  12. Cartieaux F, Thibaud MC, Zimmerli L, Lessard P, Sarrobert C, David P, Gerbaud A, Robaglia C, Sommerville S, Nussaume L (2003) Transcriptome analysis of Arabidopsis colonized by a plant-growth promoting rhizobacterium reveals a general effect on disease resistance. Plant J 36:177–188PubMedCrossRefGoogle Scholar
  13. Colangelo EP, Guerinot ML (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 16:3400–3412PubMedCrossRefGoogle Scholar
  14. Contesto C, Desbrosses G, Lefoulon C, Béna G, Borel F, Galland M, Gamet L, Varoquaux F, Touraine B (2008) Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Sci 175:178–189CrossRefGoogle Scholar
  15. Contesto C, Milesi S, Mantelin S, Zancarini A, Desbrosses G, Varoquaux F, Bellini C, Kowalczyk M, Touraine B (2010) The auxin-signaling pathway is required for the lateral root response of Arabidopsis to the rhizobacterium Phyllobacterium brassicacearum. Planta 232:1455–1470PubMedCrossRefGoogle Scholar
  16. Costacurta A, Keijers V, Vanderleyden J (1994) Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene. Mol Gen Genet 243:463–472PubMedGoogle Scholar
  17. Curie C, Briat JF (2003) Iron transport and signaling in plants. Annu Rev Plant Biol 54:183–206PubMedCrossRefGoogle Scholar
  18. del Pozo JC, Dharmasiri S, Hellmann H, Walker L, Gray WM, Estelle M (2002) AXR1-ECR1-dependent conjugation of RUB1 to the Arabidopsis cullin AtCUL1 is required for auxin response. Plant Cell 14:421–433PubMedCrossRefGoogle Scholar
  19. Desbrosses G, Contesto C, Varoquaux F, Galland M, Touraine B (2009) PGPR-Arabidopsis interactions is a useful system to study signaling pathways involved in plant developmental control. Plant Signal Behav 4:321–323PubMedCrossRefGoogle Scholar
  20. Dharmasiri S, Swarup R, Mockaitis K, Dharmasiri N, Singh SK, Kowalchyk M, Marchant A, Mills S, Sandberg G, Bennett MJ, Estelle M (2006) AXR4 is required for localization of the auxin influx facilitator AUX1. Science 312:1218–1220PubMedCrossRefGoogle Scholar
  21. Dobbelaere S, Croonenborghs A, Thys A, Vande Broek A, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155–164CrossRefGoogle Scholar
  22. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149CrossRefGoogle Scholar
  23. Estelle M, Somerville S (1987) Auxin-resistant mutants of Arabidopsis thaliana with an altered morphology. Mol Gen Genet 206:200–206CrossRefGoogle Scholar
  24. Farag MA, Ryu CM, Sumner LW, Paré PW (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262–2268PubMedCrossRefGoogle Scholar
  25. Farmer EE (2001) Surface-to-air signals. Nature 411:854–856PubMedCrossRefGoogle Scholar
  26. Forde BG, Lorenzo H (2001) The nutritional control of root development. Plant Soil 232:51–68CrossRefGoogle Scholar
  27. Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7PubMedCrossRefGoogle Scholar
  28. Glick BR, Jacobson CB, Schwarze MMK, Pasternak JJ (1994) 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Can J Microbiol 40:911–915CrossRefGoogle Scholar
  29. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68PubMedCrossRefGoogle Scholar
  30. Gutiérrez-Luna F, López-Bucio J, Altamirano-Hernández J, Valencia-Cantero E, de la Cruz H, Macías-Rodríguez L (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51:75–83CrossRefGoogle Scholar
  31. Guzman P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523PubMedCrossRefGoogle Scholar
  32. Imsande J, Touraine B (1994) N demand and the regulation of nitrate uptake. Plant Physiol 105:3–7PubMedGoogle Scholar
  33. Kai M, Piechulla B (2009) Plant growth promotion due to rhizobacterial volatiles – an effect of CO2? FEBS Lett 583:3473–3477PubMedCrossRefGoogle Scholar
  34. Kai M, Crespo E, Cristescu SM, Harren FJM, Francke W, Piechulla B (2010) Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana. Appl Microbiol Biotechnol 88:965–976PubMedCrossRefGoogle Scholar
  35. Khalid A, Arshad M, Zahir Z (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480PubMedCrossRefGoogle Scholar
  36. Kishore GK, Pande S, Podile AR (2005) Phylloplane bacteria increase seedling emergence, growth and yield of field-grown groundnut (Arachis hypogaea L.). Lett Appl Microbiol 40:260–268PubMedCrossRefGoogle Scholar
  37. Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44CrossRefGoogle Scholar
  38. Kloepper JW, Zablotowicz RM, Tipping EM, Lifshitz R (1991) Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister KL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic, Dordrecht, pp 315–326Google Scholar
  39. Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266PubMedCrossRefGoogle Scholar
  40. Lappartient AG, Touraine B (1996) Demand-driven control of root ATP sulfurylase activity and SO42− uptake in intact canola. The role of phloem-translocated glutathione. Plant Physiol 111:147–157PubMedGoogle Scholar
  41. Lappartient AG, Vidmar JJ, Leustek T, Glass ADM, Touraine B (1999) Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound. Plant J 18:89–95PubMedCrossRefGoogle Scholar
  42. Larcher M, Muller B, Mantelin S, Rapior S, Cleyet-Marel J-C (2003) Early modifications of Brassica napus root system architecture induced by a plant growth-promoting Phyllobacterium strain. New Phytol 160:119–125CrossRefGoogle Scholar
  43. Li J, Ovakim DH, Charles TC, Glick BR (2000) An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr Microbiol 41:101–105PubMedCrossRefGoogle Scholar
  44. Loper JE, Schroth MN (1986) Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet. Phytopathology 76:386–389CrossRefGoogle Scholar
  45. Lopez-Bucio J, Campos-Cuevas JC, Hernandez-Calderon E, Velasquez-Becerra C, Farias-Rodriguez R, Macias-Rodriguez LI, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant Microbe Interact 20:207–217PubMedCrossRefGoogle Scholar
  46. Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 394:27–34Google Scholar
  47. Mantelin S, Desbrosses G, Larcher M, Tranbarger TJ, Cleyet-Marel J-C, Touraine B (2006a) Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp. Planta 223:591–603PubMedCrossRefGoogle Scholar
  48. Mantelin S, Fisher-Le Saux M, Zakhia F, Béna G, Bonneau S, Jeder H, de Lajudie P, Cleyet-Marel J-C (2006b) Emended description of the genus Phyllobacterium and description of four novel species associated with plant roots: Phyllobacterium bourgognense sp. nov., Phyllobacterium ifriqiyense sp. nov., Phyllobacterium leguminum sp. nov. and Phyllobacterium brassicacearum sp. nov. Int J Syst Evol Microbiol 56:827–839PubMedCrossRefGoogle Scholar
  49. Nazoa P, Vidmar JJ, Tranbarger TJ, Mouline K, Damiani I, Tillard P, Zhuo D, Glass ADM, Touraine B (2003) Regulation of the nitrate transporter gene AtNRT2.1 in Arabidopsis thaliana: responses to nitrate, amino acids and developmental stage. Plant Mol Biol 52:689–703PubMedCrossRefGoogle Scholar
  50. Paré PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–332PubMedCrossRefGoogle Scholar
  51. Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801PubMedCrossRefGoogle Scholar
  52. Persello-Cartieaux F, David P, Sarrobert C, Thibaud MC, Achouak W, Robaglia C, Nussaume L (2001) Utilization of mutants to analyze the interaction between Arabidopsis thaliana and its naturally root-associated Pseudomonas. Planta 212:190–198PubMedCrossRefGoogle Scholar
  53. Piechulla B, Pott MB (2003) Plant scents-mediators of inter- and intraorganismic communication. Planta 217:687–689PubMedCrossRefGoogle Scholar
  54. Pitts RJ, Cernac A, Estelle M (1998) Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J 16:553–560PubMedCrossRefGoogle Scholar
  55. Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709PubMedCrossRefGoogle Scholar
  56. Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee B-h, Matsumoto TK, Koiwa H, Zhu J-K, Bressan RA, Hasegawa PM (2001) AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci USA 98:14150–14155PubMedCrossRefGoogle Scholar
  57. Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932PubMedCrossRefGoogle Scholar
  58. Scheible WR, Gonzalez Fontes A, Lauerer M, Mueller Roeber B, Caboche M, Stitt M (1997) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9:783–798PubMedCrossRefGoogle Scholar
  59. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448PubMedCrossRefGoogle Scholar
  60. Spaepen S, Dobbelaere S, Croonenborghs A, Vanderleyden J (2008) Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil 312:15–23CrossRefGoogle Scholar
  61. Stotzky G, Schenck S (1976) Volatile organic compounds and microorganisms. CRC Crit Rev Microbiol 4:333–382PubMedCrossRefGoogle Scholar
  62. Touraine B (2004) Nitrate uptake by roots – transporters and root development. In: De Kok LJ, Stulen I (eds) Plant ecophysiology, vol 3, Nitrogen acquisition and assimilation in higher plants. Kluwer Academic, Dordrecht, pp 1–34Google Scholar
  63. Tranbarger TJ, Al-Ghazi Y, Muller B, Teyssendier de la Serve B, Doumas P, Touraine B (2003) Transcription factor genes with expression correlated to nitrate-related root plasticity of Arabidopsis thaliana. Plant Cell Environ 26:459–469CrossRefGoogle Scholar
  64. Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971PubMedCrossRefGoogle Scholar
  65. van Loon L (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254CrossRefGoogle Scholar
  66. Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizospheric bacteria. Annu Rev Phytopathol 36:453–483PubMedCrossRefGoogle Scholar
  67. Vansuyt G, Robin A, Briat J, Curie C, Lemanceau P (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant Microbe Interact 20:441–447PubMedCrossRefGoogle Scholar
  68. Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73:5639–5641PubMedCrossRefGoogle Scholar
  69. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586CrossRefGoogle Scholar
  70. Walch-Liu P, Ivanov II, Filleur S, Gan Y, Remans T, Forde BG (2006) Nitrogen regulation of root branching. Ann Bot 97:875–881PubMedCrossRefGoogle Scholar
  71. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14PubMedCrossRefGoogle Scholar
  72. Zhang H, Jennings A, Barlow PW, Forde BG (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA 96:6529–6534PubMedCrossRefGoogle Scholar
  73. Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu C-M, Allen R, Melo IS, Paré PW (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851PubMedCrossRefGoogle Scholar
  74. Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2008a) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact 21:737–744PubMedCrossRefGoogle Scholar
  75. Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Paré PW (2008b) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56:264–273PubMedCrossRefGoogle Scholar
  76. Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Paré PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58:568–577PubMedCrossRefGoogle Scholar
  77. Zhang H, Murzello C, Sun Y, Kim MS, Xie X, Jeter RM, Zak JC, Dowd SE, Paré PW (2010) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant Microbe Interact 23:1097–1104PubMedCrossRefGoogle Scholar
  78. Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Guilhem Desbrosses
    • 1
  • Fabrice Varoquaux
    • 1
  • Bruno Touraine
    • 1
  1. 1.Laboratoire des Symbioses Tropicales et Méditerranéennes (UMR UM2/IRD/Cirad/SupAgro/INRA), Université Montpellier 2Montpellier Cedex 05France

Personalised recommendations