Skip to main content

Consortium of Plant-Growth-Promoting Bacteria: Future Perspective in Agriculture

  • Chapter
  • First Online:
Book cover Bacteria in Agrobiology: Plant Probiotics

Abstract

The term “plant-growth-promoting rhizobacteria” (PGPR) include soil bacteria that colonize the roots of plants following inoculation onto seed and enhance plant growth. The bacteria useful to plants were proposed to be characterized in two general types: bacteria forming a symbiotic relationship with the plant and another the free-living ones found in the soil but are often found near, on, or even within the plant tissues. The PGPR are known to enhance growth by several direct mechanisms—like biofertilizers fix nitrogen, phytostimulators directly promote the growth of plants by the production of hormones, and several other metabolites like siderophore, ACC deaminase, etc., are produced by PGPR strains for plant growth enhancement. Also, biocontrol agents that are able to protect plants from soilborne infection by deleterious microorganisms also offer environment-friendly strategy for pest control. Recently, application of two or more PGPR as consortium is taking gain in field application worldwide. This offers multifarious approach of promoting plant growth and improve yield. In this review, the various strategies for consortium formulation are described. In fact, use of rhizobia with free-living nitrogen fixers or with phosphate solubilizers including VAM fungi has been widely reported. Also, application of biocontrol agents along with direct growth promoters is also observed as holistic approach for sustainable agriculture. Further, tailor-made consortium is sometimes designed to include other benefits like improving soil health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alagawadi AR, Gaur AC (1988) Associative effect of Rhizobium and phosphate-solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant Soil 105:241–246

    Google Scholar 

  • Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic, San Diego, CA

    Google Scholar 

  • Amutha G, Sivakumaar PK, Joe MM (2009) Development and use of Azospirillum co-aggregates using certain cationic ions and its bioinoculation effect on rice growth and yield. J Agric Res 47:107–119

    Google Scholar 

  • Andrews JH (1991) Comparative ecology of microorganisms and macroorganisms. Springer, New York

    Google Scholar 

  • Aronen TS, Häggman JH, Häggman HM (2002) Applicability of the co-inoculation technique using Agrobacterium tumefaciens shooty-tumour strain 82.139 in silver birch. Plant Cell Tissue Organ Cult 70:147–154

    CAS  Google Scholar 

  • Ayala S, Rao EVSP (2002) Perspective of soil fertility management with a focus on fertilizer use for crop productivity. Curr Sci 82:797–807

    Google Scholar 

  • Bai Y, D’Aoust F, Smith DL, Driscoll BT (2002a) Isolation of plant growth promoting Bacillus strains from soybean root nodules. Can J Microbiol 48:230–238

    PubMed  CAS  Google Scholar 

  • Bai Y, Pan B, Charles TC, Smith DL (2002b) Co-inoculation dose and root zone temperature for plant growth promoting rhizobacteria on soybean [Glycine max (L.) Merr] grown in soil-less media. Soil Biol Biochem 34:1953–1957

    CAS  Google Scholar 

  • Bai Y, Zhou X, Smith DL (2003) Crop ecology, management and quality. Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci 43:1774–1781

    Google Scholar 

  • Bansal M, Chamola BP, Sarwar N (2002) Mycorrhizosphere: Interactions between Rhizosphere Microflora. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. Kluwer/Planum Press, New York, pp 143–152

    Google Scholar 

  • Barea JM (1997) Mycorrhiza/bacteria interactions on plant growth promotion. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant growth-promoting rhizobacteria-present status and future prospects. Faculty of Agriculture, Hokkaido University, Sapporo, Japan, pp 150–158

    Google Scholar 

  • Barea JM, Werner D, Azcón-Aguilar C, Azcón R (2005) Interactions of arbuscular mycorrhiza and nitrogen fixing symbiosis in sustainable agriculture. In: Werner D, Newton WE (eds) Agriculture, forestry, ecology and the environment. Kluwer, The Netherlands

    Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    CAS  Google Scholar 

  • Bashan Y, Holguin G (1997a) Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121

    CAS  Google Scholar 

  • Bashan Y, Holguin G (1997b) Short- and medium-term avenues for Azospirillum inoculation. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant growth-promoting rhizobacteria-present status and future prospects. Faculty of Agriculture, Hokkaido University, Sapporo, Japan, pp 130–149

    Google Scholar 

  • Bashan Y, Moreno M, Troyo E (2000) Growth promoting of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp. Biol Fertil Soils 32:265–272

    CAS  Google Scholar 

  • Belimov AA, Kojemiakov AP, Chuvarliyeva CV (1995) Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria. Plant Soil 173:2937–2942

    Google Scholar 

  • Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102

    Google Scholar 

  • Bullied J, Buss TJ, Vessey JK (2002) Bacillus cereus UW85 inoculation effects on growth, nodulation, and N accumulation in grain legumes: Field studies. Can J Plant Sci 82:291–298

    Google Scholar 

  • Burns TA Jr, Bishop PE, Isreal DW (1981) Enhanced nodulation of leguminous plant roots by mixed cultures of Azobacter vinelandii and Rhizobium. Plant Soil 62:399–412

    Google Scholar 

  • Cakmakci R, Kantar F, Sahin F (2001) Effect of N2-fixing bacterial inoculations on yield of sugar beet and barley. J Plant Nutr Soil Sci 164:527–531

    CAS  Google Scholar 

  • Chanway CP, Holl FB (1991) Biomass increase and associative nitrogen fixation of mycorrhizal Pinus contorta seedlings inoculated with a plant growth promoting Bacillus strain. Can J Bot 69:507–511

    CAS  Google Scholar 

  • Chanway CP, Hynes RK, Nelson LM (1989) Plant growth-promoting rhizobacteria: effects on growth and nitrogen fixation of lentil (Lens esculenta Moench) and pea (Pisum sativum L.). Soil Biol Biochem 21:511–517

    Google Scholar 

  • Chebotar VK, Asis CA Jr, Akao S (2001) Production of growth-promoting substances and high colonization ability of rhizobacteria enhance the nitrogen fixation of soybean when coinoculated with Bradyrhizobium japonicum. Biol Fertil Soils 34:427–432

    CAS  Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    CAS  Google Scholar 

  • Cordier AT, Gianinazzi S, Gianinazz-Pearson V (1996) Arbuscular mycorrhiza technology applied to micropropagated Prunus avium and to protection against Phytophthora cinnamomi. Agronomie 16:676–688

    Google Scholar 

  • Dashti N, Zhang F, Hynes R, Smith DL (1998) Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions. Plant Soil 200:205–213

    CAS  Google Scholar 

  • Davison J (1988) Plant beneficial bacteria. Nat Biotechnol 6:282–286

    CAS  Google Scholar 

  • de Boer M, Bom P, Kindt F, Keurentjes JB, van Der Sluis I, van Lun LC, Bakker PAHM (2003) Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different diseases suppressive mechanisms. Phytopathology 93:626–632

    PubMed  Google Scholar 

  • Derylo M, Skorupska A (1993) Enhancement of symbiotic nitrogen fixation by vitamin secreting fluorescent Pseudomonas. Plant Soil 154:211–217

    CAS  Google Scholar 

  • Dowling DN, O’Gara F (1994) Metabolites of Pseudomonas involved in biocontrol of plant diseases. TIBTECH 12:133–141

    CAS  Google Scholar 

  • Dubey SK (1996) Combined effect of Bradyrhizobium japonicum and phosphate solubilizing Pseudomonas striata on nodulation, yield attributes and yield rainfed soybean (Glycine max) under different sources of phosphorous in Vertisols. Ind J Microbiol 33:61–65

    Google Scholar 

  • Elkoca E, Kantar F, Sahin F (2008) Influence of nitrogen fixing and phosphate solubilizing bacteria and nodulation, plant growth and yield of chick pea. J Plant Nutr 33:157–171

    Google Scholar 

  • Elshanshoury AR (1995) Interactions of Azotobacter chroococcum, Azospirillum brasilense and Streptomyces mutabilis in relation to their effect on wheat development. J Agron Crop Sci 175:119–127

    Google Scholar 

  • Fabbri P, Del Gallo M (1995) Specific interaction between chickpea (Cicer arietinum) and three chickpea-Rhizobium strains inoculated singularly and in combination with Azospirillumbrasilense Cd. In: Fendrik I, Del Gallo M, Vanderleyden J, de Zamaroczy M (eds) Azospirillum VI and related microorganisms, genetics – physiology -ecology, vol G37, NATO ASI Series, Series G: Ecological Sciences. Springer, Berlin, pp 207–212

    Google Scholar 

  • Felici C, Vettori L, Giraldi E, Forino LMC, Toffanon A, Tagliasacchi AM, Nuti M (2008) Single and co-inoculation of Bacillus subtilis and Asospirillum brasilense on Lycopersicon esculentum: effects on plant growth and rhizosphere microbial community. Appl Soil Ecol 40:260–270

    Google Scholar 

  • Flouri F, Sini K, Balis C (1995) Interactions between Azospirillum and Phialophora radicicola. In: Fendrik I, Del Gallo M, Vanderleyden J, de Zamaroczy M (eds) Azospirillum VI and related microorganisms, genetics -physiology-ecology, vol G37, NATO ASI Series, Series G: Ecological Sciences. Springer, Berlin, pp 231–237

    Google Scholar 

  • Fuhrmann J, Wollum AG (1989) Nodulation competition among Bradyrhizobium japonicum strains as influenced by rhizosphere bacteria and iron availability. Biol Fertil Soils 7:108–112

    Google Scholar 

  • Fukui R, Fukui H, Alvarez AN (1999) Comparison of single versus multiple bacterial species on biological control of Anthurium blight. Phytopathology 89:366–373

    PubMed  CAS  Google Scholar 

  • Garbaye L (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Gonzalez LE, Bashan Y (2000) Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol 66:1527–1531

    PubMed  CAS  Google Scholar 

  • Gori A, Favilli F (1995) First results on individual and dual inoculation with Azospirillum -Glomus on wheat. In: Fendrik I, Del Gallo M, Vanderleyden J, de Zamaroczy M (eds) Azospirillum VI and related microorganisms, genetics-physiology-ecology, vol G37, NATO ASI Series, Series G: Ecological Sciences. Springer, Berlin, pp 245–249

    Google Scholar 

  • Grimes HD, Mount MS (1984) Influence of Pseudomonas putida on nodulation of Phaseolus vulgaris. Soil Biol Biochem 6:27–30

    Google Scholar 

  • Groppa MD, Zawoznik MS, Tomaro ML (1998) Effects of coinoculation with Bradyrhizobium japonicum and Azospirillum brasilense on soybean plants. Eur J Soil Biol 34:75–80

    Google Scholar 

  • Gupta SC (2004) Response of gram (Cicer arietinum) to types and methods of microbial inoculation. Ind J Agric Sci 74:73–75

    Google Scholar 

  • Halsall DM (1993) Inoculation of wheat straw to enhance lignocellulose breakdown and associated nitrogenase activity. Soil Biol Biochem 25:419–429

    CAS  Google Scholar 

  • Higa T (1991) Effective microorganisms: a biotechnology for making. In: Parr JF, Hornick SB, Whitman CE (eds) Proceedings of the First International Conference of Kyurei Nature Farming, Washington, USA, pp 8–14

    Google Scholar 

  • Hiltner L (1904) Uber neue erfahrungen und probleme auf dem gebiete der bodenbakteriologie. Arbeiten der Deutschen Landwirtschaft Gesellschaft 98:59–78

    Google Scholar 

  • Isopi R, Fabbri P, Del Gallo M, Puppi G (1995) Dual inoculation of Sorghum bicolor (L.) Moench ssp. bicolor with vesicular arbuscular mycorrhizas and Acetobacter diazotrophicus. Symbiosis 18:43–55

    Google Scholar 

  • Itzigsohn R, Kapulnik Y, Okon Y, Dovrat A (1993) Physiological and morphological aspects of interactions between Rhizobium meliloti and alfalfa (Medicago saliva) in association with Azospirillum brasilense. Can J Miol 39:610–615

    Google Scholar 

  • Jamali F, Sharifi-Tehrani A, Lutz MP, Maurhofer M (2009) Influence of host plant genotype, presence of a pathogen, and co-inoculation with Pseudomonas fluorescens strains on the rhizosphere expression of Hydrogen Cyanide and 2,4 Diacetylphloroglucinol biosynthetic genes in P. fluorescens biocontrol strain CHA0. Microb Ecol 57:267–275

    PubMed  Google Scholar 

  • Joshi KK, Kumar V, Dubey RC, Maheshwari DK (2006) Effect of chemical fertilizer adaptive variants, Pseudomonas aeruginosa GRC2 and Azotobacter chroococcum AC1 on Macrophomina phaseolina causing charcoal rot of Brassica juncea. Kor J Environ Agric 25:228–235

    Google Scholar 

  • Kaiser P (1995) Diazotrophic mixed cultures of Azospirillum brasilense and Entrobacter cloacae. In: Fendrik I, Del Gallo M, Vanderleyden J, de Zamaroczy M (eds) Azospirillum VI and related microorganisms, genetics-physiology-ecology, vol G37, NATO ASI Series, Series G: Ecological Sciences. Springer, Berlin, pp 207–212

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. IV International Conference on Plant Pathogenic Bacteria. Angers France 2:879–882

    Google Scholar 

  • Lee JK, Park D, Kim BU, Dong JI, Lee S (1998) Remediation of petroleum contaminated soil by fluidized thermal desorption. Waste Manage 18:503–507

    CAS  Google Scholar 

  • Li DM, Alexander A (1988) Co-inoculation with antibiotic-producing bacteria to increase colonization and nodulation by rhizobia. Plant Soil 108:211–219

    Google Scholar 

  • Linderman RG (1992) Vesicular-arbuscular mycorrhizae and soil microbial interactions. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. ASA Special Publication 54, Madison, WI, pp 45–70

    Google Scholar 

  • Linderman RG, Paulitz TC (1990) Mycorrhizal-rhizobacterial interactions. In: Hornby D (ed) Biological control of soil-borne plant pathogens. CAB International, Wallington, pp 261–283

    Google Scholar 

  • Lucas-Garcia JA, Probanza A, Ramos B, Barusso J, Gutierrez FJ (2004) Effect of inoculation with plant growth promoting rhizobacteria (PGPR) and Sinorhizobium fredii on biological nitrogen fixation, nodulation and growth of Glycine max. Plant Soil 267:143–153

    Google Scholar 

  • Madhaiyan M, Poonguzhali S, Kang B-G, Lee Y-J, Chung J-B (2010) Effect of co-inoculation of methylotrophic Methylobacterium oryzae with Azospirillum brasilense and Burkholderia pyrrocinia on the growth and nutrient uptake of tomato, red pepper and rice. Plant Soil 328:71–82

    CAS  Google Scholar 

  • Mahmood M, Rahman ZA, Saud HM, Shamsuddin ZH, Subramaniam S (2010) Influence of rhizobacterial and agrobacterial inoculation on selected physiological and biochemical changes of banana cultivar, Berangan (AAA) Plantlets. J Agric Sci 2:115–137

    Google Scholar 

  • Mañero FJ, Probanza A, Ramos B, Flores JJ, García-Lucas JA (2003) Effects of culture filtrates of rhizobacteria isolated from wild lupin on germination, growth, and biological nitrogen fixation of lupin seedlings. J Plant Nutr 26:1101–1115

    Google Scholar 

  • Meyer RJ, Linderman RG (1986) Response of subterranean clover to dual inoculation with vesicular arbuscular mycorrhizal fungi and plant growth promoting rhizobacterium. Pseudomonas putida.. Soil Biol Biochem 18:185–190

    CAS  Google Scholar 

  • Muthukumar T, Udaiyan K (2006) Growth of nursery-grown bamboo inoculated with arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in two tropical soil types with and without fertilizer application. New Forests 31:469–485

    Google Scholar 

  • Nelson LM (2004) Plant growth promoting rhizobacteria (PGPR): prospects for new inoculants. Crop Manage. Online, doi: 101094/Cm-2004-0301-05-RV

    Google Scholar 

  • Neyra CA, Atkinson A, Olubayi O (1995) Coaggregation of Azospirillum with other bacteria: basis for functional diversity. NATO ASI Ser 37:429–439

    Google Scholar 

  • Nikolopoulou M, Pasadakis N, Kalogerakis N (2007) Enhanced bioremediation of crude oil utilizing lipophilic fertilizers. Desalination 211:286–295

    CAS  Google Scholar 

  • Ordookhani K, Khavazi K, Moezzi A, Rejali F (2010) Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. Afr J Agric Res 5:1108–1116

    Google Scholar 

  • Pandey P, Maheshwari DK (2007) Two-species microbial consortium for growth promotion of Cajanus cajan. Curr Sci 92:1137–1142

    CAS  Google Scholar 

  • Parr JF, Hornick SB, Krupman DD (1994) Use of microbial inoculants and organic fertilizers in agricultural production. In: Proceedings of the International Seminar on the use of Microbial and Organic Fertilziers in Agricultural Production. Food and Fertilizer Technology Centre, Publication, Taiwan, pp 13–18

    Google Scholar 

  • Perveen S, Khan MS, Zaidi A (2002) Effect of rhizospheric microorganisms on growth and yield of green gram (Phaseolus radiatus). Ind J Agric Sci 72:421–423

    Google Scholar 

  • Pierson EA, Weller DM (1994) Use of mixtures of fluorescent pseudomonads to suppress take all and improve the growth of wheat. Phytopathology 84:940–947

    Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2001) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York

    Google Scholar 

  • Polonenko DR, Scher FM, Kloepper JW, Singleton CA, Laliberte M, Zaleska I (1987) Effects of root colonizing bacteria on nodulation of soybean roots by Bradyrhizobium japonicum. Can J Microbiol 33:498–503

    Google Scholar 

  • Pratibha H, Rajkumar B, Sharma GD (2011) Screening of native bacteria isolated from tea garden soil of South Assam for their abiotic stress tolerance. J Pure Appl Microbiol 5:349–353

    Google Scholar 

  • Rai R (1983) Efficacy of associative N-fixation by streptomycin resistant mutants of Azospirillum brasilense with genotypes of chick pea Rhizobium strains. J Agric Sci 100:75–80

    CAS  Google Scholar 

  • Rajendran G, Sing F, Desai AJ, Archana G (2008) Enhanced growth and nodulation of pigeon pea by coinoculation of Bacillus strains with Rhizobium spp. Bioresour Technol 99:4544–4550

    PubMed  CAS  Google Scholar 

  • Rambeloarisoa E, Rontani JF, Giusti G, Duvnjak Z, Bertand JC (1984) Degradation of crude oil by a mixed population of bacteria isolated from sea-surface foams. Mar Biol 83:69–81

    CAS  Google Scholar 

  • Raupach GS, Kloepper JW (1998) Mixtures of plant growth promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158–1164

    PubMed  CAS  Google Scholar 

  • Requena N, Jimenez I, Toro M, Barea M (1997) Interactions between plant-growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in Mediterranean semi-arid ecosystems. New Phytol 136:667–677

    Google Scholar 

  • Roy BD, Deb B, Sharma GD (2009) Dinitrogen nutrition and rice cultivation through biofertilizer technology. Assam Univ J Sci Technol 4:20–28

    Google Scholar 

  • Rozycki H, Kampert E, Strzelczyk E, Li CY, Perry DA (1994) Effect of different soil bacteria on mycorrhizae formation in Scots pine (Pinus sylvestris L.) in vitro studies. Folia Forestalia Pol 36:92–102

    Google Scholar 

  • Sahin F, Cakmakci R, Kantar F (2004) Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil 265:123–129

    CAS  Google Scholar 

  • Seneviratne G (2003) Development of eco-friendly, beneficial microbial biofilms. Curr Sci 85:1395–1396

    Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiate L.). Lett Appl Microbiol 42:155–159

    PubMed  CAS  Google Scholar 

  • Shanmungam V, Senthil N, Raguchander T, Ramanathan A, Samiyappan R (2002) Interaction of Pseudomonas with Rhizobium for their effect on the management of peanut root rot. Phytoparasitica 30:169–176

    Google Scholar 

  • Shenoy VV, Kalagudi GM (2003) Meta-bug and near-isogenic strain consortia concepts for plant growth promoting rhizobacteria Section VII – Mechanism of Biocontrol. In: 6th International PGPR Workshop, India, October 2003, p 108

    Google Scholar 

  • Sindhu SS, Gupta SK, Dadarwal KR (1999) Antagonistic effect of Pseudomonas spp. on pathogenic fungi and enhancement of growth of green gram (Vigna radiata). Biol Fertil Soil 29:62–68

    CAS  Google Scholar 

  • Sindhu SS, Suneja S, Goel AK, Parmar N, Dadarwal KR (2002) Plant promoting effects of Pseudomonas sp. on co inoculation with Mesorhizobium sp. Cicer strain under sterile and “wilt sick” soil condition. Appl Soil Ecol 19:57–64

    Google Scholar 

  • Singh CS, Amawate JS, Tyagi SP, Kapoor A (1990) Interaction effect of Glomus fasciculatum and Azospirillum brasilense on yields of various genotypes of wheat (Triticum aestivum) in pots. Z Mikrobiol 145:203–208

    Google Scholar 

  • Solans M, Vobis G, Wall LG (2009) Saprophytic actinomycetes promote nodulation in Medicago sativa-Sinorhizobium meliloti symbiosis in the presence of high N. J Plant Growth Regul 28:106–114

    CAS  Google Scholar 

  • Solans M, Vobis G, Cassán F, Luna V, Wall LG (2011) Production of phytohormones by root-associated saprophytic actinomycetes isolated from the actinorhizal plant Ochetophila trinervis. World J Microbiol Biotechnol 27:2195–2202

    CAS  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–235

    PubMed  CAS  Google Scholar 

  • Srinivasan M, Petersen DJ, Holl FB (1996) Influence of indoleacetic-acid-producing Bacillus isolates on the nodulation of Phaseolus vulgaris by Rhizobium elti under gnotobiotic conditions. Can J Microbiol 42:1006–1014

    CAS  Google Scholar 

  • Suresh CK, Bagyaraj DJ (2002) Mycorrhiza-microbe Interface: Effect on Rhizosphere. In: Sharma AK, Johri BN (eds) Arbuscular mycorrhizae. Scientific Publishers, Enfield, NH, pp 7–28

    Google Scholar 

  • Tilak KVBR, Reddy BS (2006) Bacillus cereus and B. circulans-novel inoculants for crops. Curr Sci 90:642–644

    Google Scholar 

  • Tilak KVBR, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeon pea (Cajanus cajan). Eur J Soil Sci 57:67–71

    CAS  Google Scholar 

  • Toro M, Azcon R, Barea JM (1998) The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. New Phytol 138:265–273

    CAS  Google Scholar 

  • Trotta A, Varese GC, Gnavi E, Fusconi E, Sampo’ S, Berta G (1996) Interaction between the soil-borne pathogen Phytophthora parasitica var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209

    CAS  Google Scholar 

  • Umashankari J, Sekar C (2011) Comparative evaluation of different bioformulations of PGPR cells on the enhancement of induced systemic resistance (ISR) in Rice P. oryzae pathosystem under upland condition. Curr Bot 2:12–17

    CAS  Google Scholar 

  • van Elsas JD, Dijkstra AF, Govaert JM, van Veen J (1986) Survival of Pseudomonas fluorescens and Bacillus subtilis introduced into two soils of different texture in field microplots. FEMS Microbiol Lett 38:151–160

    Google Scholar 

  • van Veen AJ, Van LS, VanEles JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61:121–133

    PubMed  Google Scholar 

  • Walsh UF, Morrissey JP, O’Gara F (2001) Pseudomonas for biocontrol phytopathogens: from functional genomics to commercial exploitation. Curr Opin Plant Biol 12:289–295

    CAS  Google Scholar 

  • Weller DM, Thomashao LS (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: O’Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms: Biotechnology and the release of GMOs. Vch, Weinheim, pp 1–18

    Google Scholar 

  • Yadegari M, Rahmani HA, Noormohammadi G, Ayneband A (2008) Evaluation of bean (Phaseolus vulgaris) seeds inoculation with Rhizobium phaseoli and plant growth promoting rhizobacteria on yield and yield components. Pak J Biol Sci 11:1935–1939

    PubMed  CAS  Google Scholar 

  • Zaidi A, Khan MS, Amil M (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19:15–21

    Google Scholar 

  • Zakhia F, Jeder H, Domergue O, Willems A, Cleyet-Marel CJ, Gillis M, Dreyfus B, de Lajudie P (2006) Characterisation of wild legume nodulating bacteria (LNB) in the infra-arid zone of Tunisia. Syst Appl Microbiol 27:380–395

    Google Scholar 

  • Zhang F, Dashti N, Hynes H, Smith DL (1996) Plant growth promoting rhizobacteria and soybean [Glycine max (L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann Bot 77:453–459

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Maheshwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pandey, P., Bisht, S., Sood, A., Aeron, A., Sharma, G.D., Maheshwari, D.K. (2012). Consortium of Plant-Growth-Promoting Bacteria: Future Perspective in Agriculture. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Plant Probiotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27515-9_10

Download citation

Publish with us

Policies and ethics