Hot Electron Transport

  • Martin P. Vaughan
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 159)


In a high electric field, a population of electrons may be driven out of thermal equilibrium with the crystal lattice, hence becoming ‘hot’. In this chapter, the basic concepts of hot electron transport in semiconductors are introduced following a semiclassical approach. Scattering mechanisms pertinent to hot electron transport are described, including phonon, electron–electron and alloy scattering. The high-field phenomena of avalanche breakdown and negative differential resistance are discussed qualitatively in terms of the underlying physics and as a motivation for device applications. Techniques to solve the Boltzmann transport equation are then introduced. A low-field solution, including an introduction to the ladder method for dealing with polar optical phonon scattering, is first discussed as a foundation for the subsequent high-field solution.


Phonon Scattering Negative Differential Resistance Boltzmann Transport Equation Ionisation Coefficient Semiclassical Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author thanks Masoud Seifikar for useful discussions on the high-field solution of the Boltzmann equation. The author’s current position at the Tyndall National Institute is funded by the Science Foundation Ireland.


  1. 1.
    K.M. Johnson, Digest of Technical Papers, International Solid State Circuits Conference, vol. 7, 64 (1964)Google Scholar
  2. 2.
    J.B. Gunn, IBM J. Res.& Dev. 8, 141 (1964)CrossRefGoogle Scholar
  3. 3.
    A. O’Brien, N. Balkan, J. Roberts, Appl. Phys. Lett. 70, 366 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    S. Chung, N. Balkan, Appl. Phys. Lett. 86, 211111 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    B.K. Ridley, Rep. Prog. Phys. 54, 169 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    N.W. Aschcroft and N.D. Mermin, Solid State Physics, (Saunders, Philadelphia 1976)Google Scholar
  7. 7.
    H. Ehrenreich, Phys. Rev. 120, 1951 (1960)ADSCrossRefGoogle Scholar
  8. 8.
    E.M. Conwell, M.O. Vassell, Phys. Rev. 166, 797 (1967)ADSCrossRefGoogle Scholar
  9. 9.
    B.K. Ridley, Quantum Processes in Semiconductors, 4th ed. (Clanderon Press, Oxford 1999)Google Scholar
  10. 10.
    H. Brooks, Adv. Electron. Electron Phys. 7, 85 (1955)CrossRefGoogle Scholar
  11. 11.
    L. Nordheim, Ann. Phys. 9, 607 (1931)CrossRefGoogle Scholar
  12. 12.
    P.A. Flinn, Phys. Rev. 104, 350 (1956)ADSCrossRefGoogle Scholar
  13. 13.
    G.L. Hall, Phys. Rev. 116, 604 (1959)ADSCrossRefGoogle Scholar
  14. 14.
    A.E. Asch, G.L. Hall, Phys. Rev. 132, 1047 (1963)ADSCrossRefGoogle Scholar
  15. 15.
    J.W. Harrison, J.R. Hauser, Phys. Rev. B 13, 5347 (1976)ADSCrossRefGoogle Scholar
  16. 16.
    F. Murphy-Armando, S. Fahy, Phys. Rev. Lett. 97, 96606 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    R.M. Martin, Electronic structure: basic theory and practical methods (Cambridge University Press, Cambridge 2004)Google Scholar
  18. 18.
    J.M. Ziman, Electrons and Phonons (Oxford University Press, Oxford 1960)Google Scholar
  19. 19.
    M.V. Fischetti, S.E. Laux, J. Appl. Phys. 80, 2234 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    S. Joyce, F. Murphy-Armando, S. Fahy, Phys. Rev. B 75, 155201 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    F. Murphy-Armando, S. Fahy, Phys. Rev. B 78, 35202 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    H. Fröhlich, Adv. Phys. 3, 325 (1954)ADSCrossRefGoogle Scholar
  23. 23.
    B.K. Ridley, Semicond. Sci. Technol. 4, 1142 (1989)ADSCrossRefGoogle Scholar
  24. 24.
    B.K. Ridley, W.J. Schaff, L.F. Eastman, J. Appl. Phys. 96, 1499 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    P.A. Wolff, Phys. Rev. 95, 1415 (1954)ADSCrossRefGoogle Scholar
  26. 26.
    W. Shockley, Solid State Electron. 2, 35 (1961)ADSCrossRefGoogle Scholar
  27. 27.
    B.K. Ridley, J. Phys. C: Solid State Phys. 16, 3373 (1983)ADSCrossRefGoogle Scholar
  28. 28.
    T.P. Lee and T. Li in Optical Fiber Telecommunications I, Ch. 18, ed. by S.E. Miller and A.G. Chynoweth (Academic Press, San Diago 1979)Google Scholar
  29. 29.
    R.J. McIntyre, IEEE Trans. Electron. Dev. 13, 164 (1966)CrossRefGoogle Scholar
  30. 30.
    B.K. Ridley, T.B. Watkins, Proc. Phys. Soc. 78, 293 (1961)ADSCrossRefGoogle Scholar
  31. 31.
    C. Hilsum, Proc. IRE 50, 185 (1962)CrossRefGoogle Scholar
  32. 32.
    W. Shan, W. Walukiewicz, J.W. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, Phys. Rev. Lett. 82, 1221 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    A. Patanè, A. Ignatov, D. Fowler, O. Makarovsky, L. Eaves, L. Geelhaar, H. Riechert, Phys. Rev. B 72, 033312 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    B.K. Ridley, Proc. Phys. Soc. 82, 954 (1963)ADSCrossRefGoogle Scholar
  35. 35.
    C. Kittel and H. Kroemer, Thermal Physics 2nd ed. (W.H. Freeman and Co., New York 2002), p. 408Google Scholar
  36. 36.
    K. Fletcher, P.N. Butcher, J. Phys. C: Solid State Phys. 5, 212 (1972)ADSCrossRefGoogle Scholar
  37. 37.
    M.P. Vaughan, Alloy and Phonon Scattering-Limited Electron Mobility in Dilute Nitrides (University of Essex, UK 2007)Google Scholar
  38. 38.
    W. Koepf, Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities (Braunschweig, Germany 1998) p. 2Google Scholar
  39. 39.
    M. Seifikar, E.P. O’Reilly and S. Fahy, Phys. Rev. B 84, 165216 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Tyndall National InstituteCorkIreland

Personalised recommendations