Advertisement

Ultrasonic Atomic Force Microscopy UAFM

  • Kazushi Yamanaka
  • Toshihiro Tsuji
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

A version of scanning probe acoustic technique was developed as ultrasonic atomic force microscopy (UAFM), where higher order mode cantilever vibration is excited at its base (support). It enables precise imaging of both topography and elasticity of stiff samples such as metals and ceramics, without a need for bonding a transducer to the sample. By virtue of this advantage, a range of unique analysis and hardware has been developed. In this chapter, after briefly summarizing the concept of UAFM, basic mathematical analysis, mechanical, and electronic instrumentation are described, including a noise-free cantilever holder and analogue/digital fast resonance frequency tracking circuit. The final section describes illustrative examples first realized by this technique as an introduction for later chapters of applications (e.g. subsurface defects).

Keywords

Fatigue Magnesium Graphite Zirconate Depression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Binnig, C.F. Quate, Ch. Gerber, Phys. Rev. Lett. 12, 930 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    O. Kolosov, K. Yamanaka, Jpn. J. Appl. Phys. 32, L1095 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    K. Yamanaka, H. Ogiso, O. Kolosov, Appl. Phys. Lett. 64, 178 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    U. Rabe, W. Arnold, Ann. Physik 3, 589 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    U. Rabe, K. Janser, W. Arnold, Rev. Sci. Instrum. 67, 3281 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    M. Radmacher, R.W. Tillmann, H.E. Gaub, Biophys. J. 64, 735 (1993)CrossRefGoogle Scholar
  7. 7.
    K. Yamanaka, E. Tomita, Jpn. J. Appl. Phys. 34, 2879 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    K. Yamanaka, S. Nakano, Jpn. J. Appl. Phys. 35, 3787 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    K. Yamanaka, S. Nakano, Appl. Phys. A 66, 313 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    K. Yamanaka, A. Noguchi, T. Tsuji, T. Koike, T. Goto, Surf. Interface Anal. 27, 600 (1999)CrossRefGoogle Scholar
  11. 11.
    K. Yamanaka, U.S. Patent 6,006,593, 1999Google Scholar
  12. 12.
    T. Tsuji, K. Yamanaka, Nanotechnology 12, 301 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    K. Yamanaka, Y. Maruyama, T. Tsuji, K. Nakamoto, Appl. Phys. Lett. 78, 1939 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    T. Tsuji, H. Irihama, K. Yamanaka, Jpn. J. Appl. Phys. 41, 832 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    K. Yamanaka, T. Tsuji, H. Irihama, T. Mihara, Proc. of SPIE 5045, 104 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    K. Yamanaka, T. Mihara, T. Tsuji, Jpn. J. Appl. Phys. 43, 3082 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    T. Tsuji, H. Ogiso, J. Akedo, S. Saito, K. Fukuda, K. Yamanaka, Jpn. J. Appl. Phys. 43, 2907 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    T. Tsuji, S. Saito, K. Fukuda, K. Yamanaka, H. Ogiso, J. Akedo, K. Kawakami, Appl. Phys. Lett. 87, 071909 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    T. Tsuji, K. Kobari, S. Ide, K. Yamanaka, Rev. Sci. Instrum. 78, 103703 (2007)Google Scholar
  20. 20.
    S. Ide, K. Kobari, T. Tsuji, K. Yamanaka, Jpn. J. Appl. Phys. 46, 4446 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    K. Yamanaka, K. Kobari, T. Tsuji, Jpn. J. Appl. Phys. 47, 6070 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    O. Wright, N. Nishiguchi, Appl. Phys. Lett. 71, 626 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    U. Rabe, J. Turner, W. Arnold, Appl. Phys. A. 66, S277 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    M. Reinstadtler, T. Kasai, U. Rabe, W. Arnold, J. Phys. D: Appl. Phys. 38, R269 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Song, B. Bhushan, J. Appl. Phys. 99, 094911 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    J.D. Adams, D. York, N. Whisman, Rev. Sci. Instrum. 75, 2903 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    K. Kobayashi, H. Yamada, K. Matsushige, Surf. Interface Anal. 33, 89 (2002)CrossRefGoogle Scholar
  28. 28.
    M.E. Lines, A.M. Glass, Principle and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977), p. 100Google Scholar
  29. 29.
    S. Stemmer, S.K. Streiffer, F. Ernst, M. Ruhle, Philos. Mag. A 71, 713 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    K. Matsuura, Y. Cho, R. Ramesh, Appl. Phys. Lett. 83, 2650 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    D. Shilo, G. Ravichandran, K. Bhattacharya, Nat. Mater. 3, 453 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    A. Gruverman, Nanoscale Characterization of Ferroelectric Materials, ed. by M. Alexe, A, Gruverman (Springer, New York, 2004)Google Scholar
  33. 33.
    U. Rabe, M. Kopycinska, S. Hirsekorn, J. Munoz Saldana, G.A. Schneider, W. Arnold, J. Phys. D: Appl. Phys. 35, 2621 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    S.K.U. Kuno, Micromechanics of Composites (Hanser, New York, 1996), p. 15Google Scholar
  35. 35.
    T. Ikeda, Fundamentals of Piezoelectricity (Oxford University Press, New York, 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Materials ProcessingTohoku UniversitySendaiJapan

Personalised recommendations