Atomic Force Acoustic Microscopy

  • U. Rabe
  • M. Kopycinska-Müller
  • S. Hirsekorn
Part of the NanoScience and Technology book series (NANO)


This chapter shortly reviews the scientific background of Atomic Force Acoustic Microscopy (AFAM), the basic theoretical models, the experimental techniques to obtain quantitative values of local elastic constants, and non-linear AFAM. Analytical and finite element models describing transverse flexural vibrations of AFM cantilevers with and without tip-surface contact are recapitulated. The models are suitable for micro fabricated silicon cantilevers of approximately rectangular cross section which are typically used in AFAM. Experimental methods to obtain single-point as well as array measurements and full spectroscopy images are discussed in combination with the respective reference methods for calibration. In a non-linear AFAM experiment, the vibration amplitudes of the sample surface and the cantilever are measured quantitatively with an interferometer at different excitation amplitudes, and the full tip-sample interaction force curve is reconstructed using a frequency dependent transfer function.


Nickel Anisotropy Titanate Strontium Trench 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Caron, U. Rabe, M. Reinstädtler, J.A. Turner, W. Arnold, Appl. Phys. Lett. 85, 6398 (2004)Google Scholar
  2. 2.
    A. Briggs, An Introduction to Scanning Acoustic Microscopy (Oxford University Press, Oxford, 1985)Google Scholar
  3. 3.
    U. Rabe, W. Arnold, Appl. Phys. Lett. 64, 1493 (1994)Google Scholar
  4. 4.
    K. Yamanaka, O. Kolosov, Jpn. J. Appl. Phys. 32, L1095 (1993)Google Scholar
  5. 5.
    K. Yamanaka, S. Nakano, Appl. Phys. A. 66, S313 (1998)Google Scholar
  6. 6.
    T. Hesjedahl, G. Behme, Appl. Phys. Lett. 78, 1948 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    B. Cretin, F. Sthal, Appl. Phys. Lett. 62, 829 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    P.A. Yuya, D.C. Hurley, J.A. Turner, J. Appl. Phys. 104, 074916 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    A. Caron, W. Arnold, Acta Materialia. 57, 4353 (2009)CrossRefGoogle Scholar
  10. 10.
    D.C. Hurley, J.A. Turner, J. Appl. Phys. 102, 033509 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    G. Stan, S. Krylyuk, A.V. Davydov, M.D. Vaudin, L.A. Bendersky, R.F. Cook, Ultramicroscopy. 109, 929 (2009)CrossRefGoogle Scholar
  12. 12.
    P. Maivald, H.T. Butt, S.A. Gould, C.B. Prater, B. Drake, J.A. Gurley, V.B. Elings, P.K. Hansma, Nanotechnology 2, 103 (1991)Google Scholar
  13. 13.
    P.-E. Mazeran, J.-L. Loubet, Trib. Lett. 3, 125 (1997)CrossRefGoogle Scholar
  14. 14.
    R. Arinero, G. Lévêque, Rev. Sci. Instrum. 74, 104 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    M. Kopycinska, C. Ziebert, H. Schmitt, U. Rabe, S. Hirsekorn, W. Arnold, Surf. Sci. 532–535, 450 (2003)Google Scholar
  16. 16.
    S. Jesse, B. Mirman, S.V. Kalinin, Appl. Phys. Lett. 89, 022906 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    T. Drobek, R.W. Stark, W.M. Heckl, Phys. Rev. B. 64, 045401 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    H.-L. Lee, W.-J. Chang, Y-Ch. Yang, Mater. Chem. Phys. 92, 438 (2005)Google Scholar
  19. 19.
    K.-N. Chen, J.-Ch. Huang, in Proceedings of the 2005 International Conference on MEMS, NANO and Smart Systems (ICMENS’05), pp. 65–68, 2005Google Scholar
  20. 20.
    A. Caron, U. Rabe, M. Reinstädtler, J.A. Turner, W. Arnold, Appl. Phys. Lett. 85, 6398 (2004)Google Scholar
  21. 21.
    M. Reinstädtler, T. Kasai, U. Rabe, B. Bhushan, W. Arnold, J. Phys. D: Appl. Phys. 38, R269 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    V. Scherer, M. Reinstaedtler, W. Arnold. Atomic force microscopy with lateral modulation. ed. by B. Bhushan et al. in: Applied Scanning Probe, Methods. 2003, pp. 75–115Google Scholar
  23. 23.
    W. Weaver, S.P. Timoshenko, D.H. Young, Vibration Problems in Engineering (Wiley, New York, 1990)Google Scholar
  24. 24.
    U. Rabe, K. Janser, W. Arnold, Rev. Sci. Instrum. 67, 3281 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    S. Nakano, R. Maeda, K. Yamanaka, Jpn. J. Appl. Phys. 36, 3265 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    A.W. McFarland, M.A. Poggi, L.A. Bottomley, J.S. Colton, J. Micromech. Microeng. 15, 785 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    D.-A. Mendels, M. Lowe, A. Cuenat, M.G. Cain, E. Vallejo, D. Ellis, F. Mendels, J. Micromech. Microeng. 16, 1720 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    U. Rabe, in Applied Scanning Probe Methods II, ed. by H. Fuchs, B. Bhushan. Atomic Force Acoustic Microscopy, (Berlin, Springer, 2006)Google Scholar
  29. 29.
    U. Rabe, S. Hirsekorn, M. Reinstädtler, T. Sulzbach, Ch. Lehrer, W. Arnold, Nanotechnology. 18, 044008 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Nanosensors, NCL, NANOSENSORS\(^TM\), Rue Jaquet-Droz 1, CH-2002 Neuchatel, Switzerland.
  31. 31.
    J-Ch. Hsu, H.-L. Lee, W.-J. Chang, Nanotechnology. 18, 285503 (2007)Google Scholar
  32. 32.
    H.-L. Lee, W.-J. Chang, Jpn. J. Appl. Phys. 48, 065005 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    D. Passeri, A. Bettucci, M. Germano, M. Rossi, A. Alippi, S. Orlanducci, M.L. Terranova, M. Ciavarella, Rev. Sci. Instrum. 76, 093904 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    G. Stan, R.F. Cook, Nanotechnology. 19, 235701 (2008); (10pp)Google Scholar
  35. 35.
    J.E. Sader, J.W.M. Chon, P. Mulvaney. Rev. Sci. Instrum. 70, 3967 (1999)Google Scholar
  36. 36.
    N.A. Burnham, X. Chen, C.S. Hodges, G.A. Matei, E.J. Thoreson, C.J. Roberts, M.C. Davies, S.J.B. Tendler, Nanotechnology. 14, 1 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    E. Kester, U. Rabe, L. Presmanes, Ph. Tailhades, W. Arnold. J. Phys. Chem. Solids. 61, 1275 (2000)Google Scholar
  38. 38.
    U. Rabe, S. Amelio, E. Kester, V. Scherer, S. Hirsekorn, W. Arnold, Ultrasonics. 38, 430 (2000)CrossRefGoogle Scholar
  39. 39.
    D.C. Hurley, K. Shen, N.M. Jennett, J.A. Turner, J. Appl. Phys. 94, 2347 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    F.J. Espinoza-Beltrán, K. Geng, J. Muñoz Saldaña, U. Rabe, S. Hirsekorn, W. Arnold, New J. Phys. 11, 083034 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    F. Marinello, P. Schiavuta, S. Carmingnato, E. Savio, CIRP J. Manufact. Sci. Technol. 3, 49 (2010)CrossRefGoogle Scholar
  42. 42.
    K. Kobayashi, H. Yamada, H. Itoh, T. Horiuchi, K. Matsushige, Rev. Sci. Instrum. 72, 4383 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    A.B. Kos, D.C. Hurley, Meas. Sci. Technol. 19, 015504 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    S. Jesse, S.V. Kalinin, R. Proksch, A.P. Baddorf, B.J. Rodriguez, Nanotechnology. 18, 435503 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    U. Rabe, S. Amelio, M. Kopycinska, M. Kempf, M. Göken, W. Arnold, Surf. Interface Anal. 33, 65 (2002)CrossRefGoogle Scholar
  46. 46.
    M. Kopycinska-Müller, R.H. Geiss, J. Müller, D.C. Hurley, Nanotechnology. 16, 703 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    S. Amelio, A.V. Goldade, U. Rabe, V. Scherer, B. Bhushan, W. Arnold, Thin Solid Films. 392, 75 (2001)ADSCrossRefGoogle Scholar
  48. 48.
    M. Kopycinska-Müller, On the elastic properties of nanocrystalline materials and the determination of elastic properties on a nanoscale using the atomic force acoustic microscopy technique. Saarbrücken : PhD thesis, Science and Technical Faculty III, Saarland University and IZFP report No. 050116-TW, 2005Google Scholar
  49. 49.
    G. Stan, W. Price, Rev. Sci. Instrum. 77, 1037071 (2006)CrossRefGoogle Scholar
  50. 50.
    J.P. Killgore, R.H. Geiss, D.C. Hurley, Small. 7, 1018 (2011)Google Scholar
  51. 51.
    M. Kopycinska-Müller, R.H. Geiss, D.C. Hurley, Ultramicroscopy. 106, 466 (2006)CrossRefGoogle Scholar
  52. 52.
    D.C. Hurley, in Applied Scanning Probe Methods Vol. XI, ed. by B. Bhushan, H. Fuchs. Contact Resonance Force Microscopy Techniques for Nanomechanical Measurements, (Berlin, New York, 2009), pp. 97–138Google Scholar
  53. 53.
    D.C. Hurley, M. Kopycinska-Müller, A.B. Kos, R.H. Geiss, Adv. Engin. Mater. 7, 713 (2005)CrossRefGoogle Scholar
  54. 54.
    D.C. Hurley, M. Kopycinska-Müller, E.D. Langlois, A.B. Kos, N. Barbosa, Appl. Phys. Lett. 89, 021211 (2006)CrossRefGoogle Scholar
  55. 55.
    D. Passeri, A. Bettucci, M. Germano, M. Rossi, A. Alippi, V. Sessa, A. Fiori, E. Tamburri, M.L. Terranova, Appl. Phys. Lett. 88, 121910 (2006)ADSCrossRefGoogle Scholar
  56. 56.
    D. Passeri, M. Rossi, A. Alippi, A. Bettucci, D. Manno, A. Serra, E. Filippo, M. Lucci, I. Davoli, Superlattices Microstruct. 44, 641 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    A. Kumar, U. Rabe, S. Hirsekorn, W. Arnold, Appl. Phys. Lett. 92, 183106 (2008)ADSCrossRefGoogle Scholar
  58. 58.
    F. Mege, F. Volpi, M. Verdier, Microelectron. Eng. 87, 416 (2010)CrossRefGoogle Scholar
  59. 59.
    B. Cappella, G. Dietler, Surf. Sci. Rep. 34, 1 (1999)CrossRefGoogle Scholar
  60. 60.
    K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)zbMATHGoogle Scholar
  61. 61.
    J.J. Vlassak, W D. Nix. Phil. Mag. A. 67, 1045 (1993)ADSCrossRefGoogle Scholar
  62. 62.
    U. Rabe, M. Kopycinska, S. Hirsekorn, J. Muñoz Saldaña, G.A. Schneider, W. Arnold, J. Phys. D: Appl. Phys. 35, 2621 (2002)ADSCrossRefGoogle Scholar
  63. 63.
    M. Prasad, M. Kopycinska, U. Rabe, W. Arnold, Geophys. Res. Lett. 29, 13 (2002)CrossRefGoogle Scholar
  64. 64.
    D.C. Hurley, M. Kopycinska-Müller, A.B. Kos, R.H. Geiss, Meas. Sci. Technol. 15, 2167 (2005)CrossRefGoogle Scholar
  65. 65.
    U. Rabe, M. Kopycinska, S. Hirsekorn, W. Arnold, Ultrasonics. 40, 49 (2001)CrossRefGoogle Scholar
  66. 66.
    N.A. Burnham, A.J. Kulik, G. Gremaud, Phys. Rev. Lett. 74, 5092 (1995)ADSCrossRefGoogle Scholar
  67. 67.
    E.M. Abdel-Rahman, A.H. Nayfeh, Nanotechnology. 16, 199 (2005)CrossRefGoogle Scholar
  68. 68.
    H.N. Arafat, A.H. Nayfeh, E.M. Abdel-Rahman, Nonlinear Dyn. 54, 151 (2008)Google Scholar
  69. 69.
    B. Wei, J.A. Turner, in Review of Progress in Quantitative Nondestructive Evaluation vol 20, ed. by D.O. Thompson, D.E. Chimenti, 2001, p. 1658Google Scholar
  70. 70.
    J.A. Turner, Nondestructive evaluation and reliability of micro- and nanomaterial systems. Proc. SPIE 4703, 74 (2002)ADSCrossRefGoogle Scholar
  71. 71.
    K. Shen, J.A. Turner, Nondestructive evaluation and reliability of micro- and nanomaterial systems. Proc. SPIE. 4703, 93 (2002)ADSCrossRefGoogle Scholar
  72. 72.
    P. Vairac, R. Boucenna, J. Le Rouzic, B. Cretin, J. Phys. D: Appl. Phys. 41, 155503 (2008)ADSCrossRefGoogle Scholar
  73. 73.
    J.H. Cantrell, S A. Cantrell. Phys. Rev. B. 77, 165409 (2008)ADSCrossRefGoogle Scholar
  74. 74.
    D. Rupp, U. Rabe, S. Hirsekorn, W. Arnold, J. Phys. D: Appl. Phys. 40, 7136 (2007)ADSCrossRefGoogle Scholar
  75. 75.
    D. Rupp, Nichtlineare Kontaktresonanzspektroskopie zur Messung der Kontakt- und Adhäsionskräfte in der Kraftmikroskopie, Diploma thesis, Saarland University, IZFP report 060130-TW, 2006Google Scholar
  76. 76.
    R. Vázquez, F.J. Rubio-Sierra, R.W. Stark, Nanotechnology. 18, 185504 (2007)ADSCrossRefGoogle Scholar
  77. 77.
    S. Hirsekorn, U. Rabe, W. Arnold, Nanotechnology. 8, 57 (1997)ADSCrossRefGoogle Scholar
  78. 78.
    J.A. Turner, S. Hirsekorn, U. Rabe, W. Arnold, J. Appl. Phys. 82, 966 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Fraunhofer Institute for Non-Destructive Testing (IZFP)SaarbrückenGermany
  2. 2.Fraunhofer Institute for Non-Destructive Testing (IZFP)DresdenGermany

Personalised recommendations