Advertisement

Contact, Interactions, and Dynamics

  • E. Barthel
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

In this short introduction to tip–surface interaction, we focus on the impact of adhesion on the elastic contact of small spherical bodies. Standard notions are first reviewed but more complex contact conditions involving coatings or roughness are also considered. Special attention is devoted to dynamic response and ensuing dissipation.

Keywords

Tungsten Acoustics Incompressibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Y.Y. Lin, H.Y. Chen, Effect of large deformation and material nonlinearity on the JKR (Johnson-Kendall-Roberts) test of soft elastic materials. J. Polym. Sci. B: Polym. Phys. 44, 2912–2922 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    E. Barthel, On the description of the adhesive contact of spheres with arbitrary interaction potentials. J. Colloid Interface Sci. 200, 7–18 (1998)CrossRefGoogle Scholar
  3. 3.
    H. Hertz, Ueber die Berührung fester elastischer Körper. J. Reine Angew. Math. 92, 156–171 (1881)Google Scholar
  4. 4.
    J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, San Diego, 1992)Google Scholar
  5. 5.
    B.V. Derjaguin, Untersuchungen über Die Reibung und Adhäsion. Kolloid Zeitschrift 69, 55–164 (1934)Google Scholar
  6. 6.
    V.A. Parsegian, Van der Waals Forces (CUP, New York, 2006)Google Scholar
  7. 7.
    E. Charlaix, M. Ciccotti, Capillary condensation in confined media, in Handbook of Nanophysics: Principles and Methods, ed. by K. Sattler (CRC Press, Boca Raton, 2010)Google Scholar
  8. 8.
    E. Barthel, X.Y. Lin, J.L. Loubet, Adhesion energy measurements in the presence of adsorbed liquid using a rigid surface force apparatus. J. Colloid Interface Sci. 177, 401–406 (1996)CrossRefGoogle Scholar
  9. 9.
    B.V. Derjaguin, V.M. Muller, YuP Toporov, Effect of contact deformation on the adhesion. J. Colloid Interface Sci. 53, 314 (1975)CrossRefGoogle Scholar
  10. 10.
    R.M. Pashley, P.M. McGuiggan, B.W. Ninham, J. Brady, D.F. Evans, Direct measurements of surface forces between bilayers of double-chained quaternary ammonium acetate and bromide surfactants. J. Phys. Chem. 90, 1637–1642 (1986)CrossRefGoogle Scholar
  11. 11.
    D. Maugis, Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 150, 243–269 (1992)CrossRefGoogle Scholar
  12. 12.
    H. Hölscher, W. Allers, U.D. Schwarz, A. Schwarz, R. Wiesendanger, Determination of tip-sample interaction potentials by dynamic force spectroscopy. Phys. Rev. Lett. 83(23), 4780–4783 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    K.L. Johnson, K. Kendall, A.D. Roberts, Surface energy and the contact of elastic solids. Proc. Roy. Soc. A 324, 301–313 (1971)ADSCrossRefGoogle Scholar
  14. 14.
    J.A. Greenwood, The theory of viscoelastic crack propagation and healing. J. Phys. D: Appl. Phys. 37, 2557–2569 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    E. Barthel, A. Perriot, Adhesive contact to a coated elastic substrate. J. Phys. D: Appl. Phys. 40, 1059–1067 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    J.A. Greenwood, K.L. Johnson, An alternative to the Maugis model of adhesion between elastic spheres. J. Phys. D: Appl. Phys. 31, 3279–3290 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    K.L. Johnson, Contact mechanics and adhesion of viscoelastic solids, in Microstructure and Microtribology of Polymer Surfaces, ed. by K.J. Wahl, V.V. Tsukruk (ACS, Washington, 2000), p. 24Google Scholar
  18. 18.
    D. Tabor, Surface forces and surface interactions. J. Colloid Interface Sci. 58, 2 (1977)CrossRefGoogle Scholar
  19. 19.
    C.-Y. Hui, N.J. Glassmaker, T. Tang, A. Jagota, Design of biomimetic fibrillar interfaces: 2 mechanics of enhanced adhesion. J. R. Soc. Interface 1, 35–48 (2004)CrossRefGoogle Scholar
  20. 20.
    H. Gao, H. Yao, Shape insensitive optimal adhesion of nanoscale fibrillar structures. PNAS 101(21), 7851–6 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    M.A. Lantz, S.J. O’Shea, M.E. Welland, Atomic-force microscope study. Phys. Rev. B 55, 10776 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    E. Gacoin, A. Chateauminois, C. Frétigny, A. Perriot, E. Barthel, Measurement of the mechanical properties of thin films mechanically confined within contacts. Tribol. Lett. 21, 245–52 (2006)CrossRefGoogle Scholar
  23. 23.
    H.J. Gao, C.H. Chiu, J. Lee, Elastic contact versus indentation modeling of multi-layered materials. Int. J. Solids Struct. 29, 2471–2492 (1992)CrossRefGoogle Scholar
  24. 24.
    A. Perriot, E. Barthel, Elastic contact to a coated half-space: effective elastic modulus and real penetration. J. Mater. Res. 19, 600–608 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    D. Reedy, Thin-coating contact mechanics with adhesion. J. Mater. Res. 21, 2660–2668 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    E. Barthel, Elastic adhesive contact—JKR and more. J. Phys. D: Appl. Phys. 41, 163001 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    A. Onur Sergici, G.G. Adams, S. Muftu, Adhesion in the contact of a spherical indenter with a layered elastic half-space. J. Mech. Phys. Sol. 54, 1843–1861 (2006)ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    S. Hyun, L. Pei, J.F. Molinari, M.O. Robbins, Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E 70(2), 26117 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    J.A. Greenwood, J.B.P. Williamson, Contact of nominally flat Surf. Proc. Roy. Soc. A 295(1442), 300–319 (1966)ADSCrossRefGoogle Scholar
  30. 30.
    K. Fuller, D. Tabor, The effect of surface roughness on the adhesion of elastic solids. Proc. Roy. Soc. A 345, 327–342 (1975)ADSCrossRefGoogle Scholar
  31. 31.
    M.C. Audry, S. Ramos, E. Charlaix, Adhesion between highly rough alumina surfaces: an atomic force microscope study. J. Colloid Interface Sci. 331(2), 371–378 (2009)CrossRefGoogle Scholar
  32. 32.
    J. Reed, Energy losses due to elastic wave propagation during an elastic impact. J. Phys. D: Appl. Phys. 18, 2329 (1985)ADSCrossRefGoogle Scholar
  33. 33.
    G. Kuwabara, K. Kono, Restitution coefficient in a collision between two spheres. Jpn. J. Appl. Phys. 26(8), 1230–1233 (1987)ADSCrossRefGoogle Scholar
  34. 34.
    M. Barquins, J.-C. Charmet, Influence of surface properties on the rebound of a rigid ball on a rubber surface. J. Adh. 57, 5–19 (1996)CrossRefGoogle Scholar
  35. 35.
    G.J. Lake, A.G. Thomas, The strength of highly elastic materials. Proc. Roy. Soc. Lond. Ser. A 300, 108–119 (1967)ADSCrossRefGoogle Scholar
  36. 36.
    A. Jagota, S.J. Bennison, Mechanics of adhesion through a fibrillar microstructure. Integr. Comp. Biol. 42(6), 1140 (2002)CrossRefGoogle Scholar
  37. 37.
    A.N. Gent, Adhesion and strength of viscoelastic solids. Is there a relationship between adhesion and bulk properties? Langmuir 12(19), 4492–4496 (1996)CrossRefGoogle Scholar
  38. 38.
    R.A. Schapery, A theory of crack initiation and growth in viscoelastic media II. Approximate methods of analysis. Int. J. Fract. 11(1), 369–388 (1975)MathSciNetCrossRefGoogle Scholar
  39. 39.
    J.A. Greenwood, K.L. Johnson, The mechanics of adhesion of viscoelastic solids. Philos. Mag. A 43(3), 697–711 (1981)ADSCrossRefGoogle Scholar
  40. 40.
    P.G. de Gennes, Soft adhesives. Langmuir 12(19), 4497–4500 (1996)CrossRefGoogle Scholar
  41. 41.
    E. Barthel, C. Frétigny, Adhesive contact of elastomers: effective adhesion energy and creep function. J. Phys. D: Appl. Phys. 42(19), 195302 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    K.J. Wahl, S.A.S. Asif, J.A. Greenwood, K.L. Johnson, Oscillating adhesive contacts between micron-scale tips and compliant polymers. J. Colloid Interface Sci. 296, 178–188 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Surface du Verre et Interfaces, CNRS/Saint-GobainAubervilliers CedexFrance

Personalised recommendations