Advertisement

Application of Acoustic Techniques for Characterization of Biological Samples

  • Bernhard R. Tittmann
  • Anne Ebert
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

The atomic force microscope (AFM) is emerging as a powerful tool in cell biology. Originally developed for high-resolution imaging purposes, the AFM also has unique capabilities as a nano-indenter to probe the dynamic viscoelastic material properties of living cells in culture. In particular, AFM elastography combines imaging and indentation modalities to map the spatial distribution of cell mechanical properties, which in turn reflect the structure and function of the underlying cytoskeleton. Such measurements have contributed to our understanding of cell mechanics and cell biology and appear to be sensitive to the presence of disease in individual cells. Examples of applications and considerations on the effective capability of ultrasonic AFM techniques on biological samples (both mammalian and plant) are reported in this chapter. Included in the discussion is scanning near-field ultrasound holography an acoustic technique which has been used to image structure and in particular nanoparticles inside cells. For illustration an example that is discussed in some detail is a technique for rapid in vitro single-cell elastography. The technique is based on atomic force acoustic microscopy (AFAM) but (1) requires only a few minutes of scan time, (2) can be used on live cells briefly removed from most of the nutrient fluid, (3) does negligible harm or damage to the cell, (4) provides semi-quantitative information on the distribution of modulus across the cell, and (5) yields data with 1–10 nm resolution. The technique is shown to enable rapid assessment of physical/biochemical signals on the cell modulus and contributes to current understanding of cell mechanics.

Keywords

Hydrated Albumin Ferrite Immobilization Sine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

B.R.T. was partially supported as part of the Center for Lignocellulose Structure and Formation (CLSF) an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001090.

References

  1. 1.
    K.D. Costa, Single-cell elastography: probing for disease with the atomic force microscope. J. Dis. Markers (ed. by N. Simpson) 19, 139–154 (2004)Google Scholar
  2. 2.
    B.S. Elkin et al., Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation (Synapsis). J. Neurot. 24(5), 812–822 (2007)Google Scholar
  3. 3.
    S. Amelio, A.V. Goldade, U. Rabe, V. Scherer, B. Bhushan, W. Arnold, Measurements of elastic properties of ultra-thin diamond-like carbon coating using atomic force microscopy. Thin Solid Films 72, 75–84 (2001)CrossRefGoogle Scholar
  4. 4.
    M.G. Heaton, C.B. Prater, P. Maivald, Force Modulation Imaging: Application Note. Veeco Metrology Group, Digital Instruments, 2001Google Scholar
  5. 5.
    E. Kester, U. Rabe, L. Presmanes, Ph Tailhades, W. Arnold, Measurement of Yong’s modulus of nanocrystalline ferrites with spinel structures by atomic force acoustic microscopy. J. Phys. Chem. Solid. 61, 1275–1284 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    M. Kopycinska-Mueller, R.H. Geiss, J. Mueller, D.C. Hurley, Elastic property measurements of ultrathin films using atomic force acoustic microscopy. Nanotechnology 16, 7033–709 (2005)CrossRefGoogle Scholar
  7. 7.
    O.V. Kolosov, M.R. Castell, C.D. Marsh, G. Andrew, D. Briggs, Imaging the elastic nanostructure of Ge islands by ultrasonic force microscopy. Phys. Rev. Lett. 8, 1046–1049 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    P. Maivald, H.J. Butt, S.A.C. Gould, C.B. Prater, B. Drake, J.A. Gurley, V.B. Elings, P.K. Hansma, Using force modulation to image surface elasticities with the atomic force microscope. Nanotechnology. 2, 103–106 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    K. Yamanaka, H. Ogiso, O. Kolosov, Analysis of subsurface imaging and effect of contact elasticity in the ultrasonic force microscope. Japanese J. Appl. Phys. 33, 3197–3203 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    E.K. Dimitiadis, F. Horkay, J. Maresca, B. Kachar, R.S. Chadwick, Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82, 2798–2810 (2002)CrossRefGoogle Scholar
  11. 11.
    G. Shekhawat, S. Avasthy, A. Srivastava, S.-H. Tark, V. Dravid, Probing buried defects in extreme ultraviolet multilayer blanks using ultrasound holography. IEEE Trnas. Nanaotechnol. 9(6), 671–674 (2010)Google Scholar
  12. 12.
    R. Szoszkiewicz, A. Kulik, G. Gremaud, M. Lekka, Probing local water contents of in vitro protein films by ultrasonic force microscopy. Appl. Phys. Lett. 86, 123901 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    J. Cuberes, Mechanical diode mode ultrasonic friction force microscopy. J. Phys. Conf. Series 100, 052014 (2008)Google Scholar
  14. 14.
    A. Ebert, B.R. Tittmann, J. Du, W. Scheuchenzuber, Technique for rapid in vitro single-cell elastography. J. Ultrasound Med. Biol. 32(11), 1687–1702 (2006)CrossRefGoogle Scholar
  15. 15.
    C. Miyasaka, B.R. Tittmann, Ultrasonic atomic force microscopy on spray dried ceramic powder. In: Acoustic Imaging, vol. 27, ed. by W. Arnold, S. Hirsekorn (Kluver Academic, Dordrecht, 2004), pp. 715–720Google Scholar
  16. 16.
    R. Howland, L. Benatar, A Practical Guide to Scanning Probe Microscopy, vol. 74 (Park Scientific Instruments, Sunnyvale, 1996)Google Scholar
  17. 17.
    J.H. Kinney, M. Balooch, S.J. Marshall, G.W. Marshall, Atomic force microscope measurements of the hardness and elasticity of peritublular and intertubular human dentin. J. Biomech. Eng. 118, 133–135 (1996)CrossRefGoogle Scholar
  18. 18.
    M. Lantz, Y.Z. Liu, X.D. Cui, H. Tokumoto, S.M. Lindsay, Dynamic force microscopy fluids. Surf. Interface Anal. 27(5–6), 354–360 (1999)Google Scholar
  19. 19.
    R.M. Overney, E. Meyer, J. Frommer, H.-J. Guentherrodt, M. Fujihara, H. Takano, Y. Gotch, Force microscopy study of friction and elastic compliance of phase-separated organic thin films. Langmuir 10, 1282–1286 (1994)CrossRefGoogle Scholar
  20. 20.
    D. Stamenovic, D.E. Ingber, Models of cytoskeletal mechanics of adherent cells. Biomech. Model Mechanobiol. 1(1), 95–108 (2002)CrossRefGoogle Scholar
  21. 21.
    A. Stevens, J.L. Lowe, Human Histology (Mosby, London, 1997)Google Scholar
  22. 22.
    K.N. Wadu-Mesthrige, A.A. Amro, A.S. Garno, A.A. Amro, S. Cruchon-Dupeyrat, G.Y. Liu, Contact resonance imaging—a simple approach to improve the resolution of AFM for biological and polymeric materials. Appl. Surf. Sci. 175–176, 391–398 (2001)CrossRefGoogle Scholar
  23. 23.
    M. Nagayama, H. Haga, Y. Tanaka, Y. Hirai, K. Kabuto, K. Kawabata, Improvement of force modulation mode with scanning probe microscopy for imaging viscoelasticity of living cells. Jpn. J. Appl. Phys. 44, 952–4955 (2002)Google Scholar
  24. 24.
    E. Al-Hassan, W.F. Heinz, M.D. Antonik, N.P. D’Costa, S. Nageswaran, C.A. Schoeneberger, J.H. Hoh, Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 74, 1564–1578 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    J.H. Darnell, D. Lodish, D. Baltimore, Molecular Cell Biology, 2nd edn. (Scientific American Books, New York, 1990)Google Scholar
  26. 26.
    M. Radmacher, C.M. Kacher, J.P. Cleveland, P.K. Hansma, Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70, 556–567 (1996)CrossRefGoogle Scholar
  27. 27.
    R.I. Freshney, Culture of Animal Cells: Manual of Basic Technologies (Wiley, New York, 2000)Google Scholar
  28. 28.
    R. Nowakowski, P. Lucklam, Imaging the surface details of red blood cells with atomic force microscopy. Surf. Interface Anal. 33, 118–121 (2002)CrossRefGoogle Scholar
  29. 29.
    D.E. Ingber, I. Tensegrity, Cell structure and hierarchical systems biology. J. Cell Sci. 116, 1157–1173 (2003a)CrossRefGoogle Scholar
  30. 30.
    D.E. Ingber, Tensegrity II. How structural networks influence cellular information processing networks. J. Cell Sci. 116, 1397–1408 (2003b)CrossRefGoogle Scholar
  31. 31.
    A. Vinckier, G. Semenza, Measuring elasticity of biological materials by atomic force microscopy. FEBS Lett. 430, 12–16 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations