Quantitative Subsurface Imaging by Acoustic AFM Techniques

  • Zehra Parlak
  • Levent F. Degertekin
Part of the NanoScience and Technology book series (NANO)


We review the modeling techniques developed for analyzing the effects of 2-D and 3-D subsurface structures on the stiffness measurements by acoustic AFM. Starting from the analytical Hertzian model, we describe important parameters such as penetration depth and subsurface resolution for acoustic AFM imaging. These definitions point to the need for analytical–numerical models based on mechanical surface impedance method and finite element modeling of arbitrary 2-D and 3-D structures buried under the surface. By using the 2-D and 3-D models, the dependence of penetration depth and subsurface resolution on material properties, subsurface structure geometry, and imaging parameters are investigated. It has been shown that high contrast between subsurface structure and substrate increases the detectability of the structure and the visible depth of the structure depends highly on the contact radius. Soft subsurface structures or voids can be detected with appropriate tip radius and force even if they are as deep as 450 nm. However, the sensitivity is higher while detecting stiff structures under thin soft layers. These results can be extrapolated for different applications using the presented guidelines.


Titanium Dioxide Graphite Ferrite Tungsten 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    V.V. Tsukruk, Surface Nanomechanical Properties of Polymer Nanocomposite Layers. Langmuir 17(21), 6715–6719 (2001)CrossRefGoogle Scholar
  2. 2.
    G.G. Yaralioglu, Contact stiffness of layered materials for ultrasonic atomic force microscopy. J. Appl. Phys. 87(10), 7491–7496 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    U. Rabe, K. Janser, W. Arnold, Vibrations of free and surface-coupled atomic force microscope cantilevers: Theory and experiment. Rev. Sci. Instrum. 67(9), 3281–3293 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    U. Rabe et al., Quantitative determination of contact stiffness using atomic force acoustic microscopy. Ultrasonics 38(1–8), 430–437 (2000)CrossRefGoogle Scholar
  5. 5.
    K.B. Crozier, Thin film characterization by atomic force microscopy at ultrasonic frequencies. Appl. Phys. Lett. 76(14), 1950–1952 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    A.F. Sarioglu, A. Atalar, F.L. Degertekin, Modeling the effect of subsurface interface defects on contact stiffness for ultrasonic atomic force microscopy. Appl. Phys. Lett. 84, 5368 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    M. Kopycinska-Muller et al., Elastic-property measurements of ultrathin films using atomic force acoustic microscopy. Nanotechnology 16, 703 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    D.C Hurley et al., Mapping substrate/film adhesion with contact-resonance-frequency atomic force microscopy. Appl. Phys. Lett. 89(2), 021911 (2006)Google Scholar
  9. 9.
    K. Yamanaka, H. Ogiso, O. Kolosov, Ultrasonic force microscopy for nanometer resolution subsurface imaging. Appl. Phys. Lett. 64(2), 178–180 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)Google Scholar
  11. 11.
    B. Bhushan, in Nanotribology and Nanomechanics: An Introduction, ed. by B. Bhushan (Springer, Berlin, 2005)Google Scholar
  12. 12.
    J.A. Turner et al., High-frequency response of atomic-force microscope cantilevers. J. Appl. Phys. 82, 966 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    U. Rabe, J. Turner, W. Arnold, Analysis of the high-frequency response of atomic force microscope cantilevers. Appl. Phys. A Mater. Sci. Process. 66(7), S277 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    Z. Parlak, F.L. Degertekin, Contact stiffness of finite size subsurface defects for atomic force microscopy: Three-dimensional finite element modeling and experimental verification. J. Appl. Phys. 103(11), 114910–8 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    T. Tsuji, K. Yamanaka, Observation by ultrasonic atomic force microscopy of reversible displacement of subsurface dislocations in highly oriented pyrolytic graphite. Nanotechnology 12(3), 301–307 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    D.C. Hurley, J.A. Turner, Humidity effects on the determination of elastic properties by atomic force acoustic microscopy. J. Appl. Phys. 95, 2403 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    D. Passeri, A. Bettucci, M. Rossi, Acoustics and atomic force microscopy for the mechanical characterization of thin films. Anal. Bioanal. Chem. 396(8), 2769–2783 (2010)Google Scholar
  18. 18.
    S. Amelio, Measurements of elastic properties of ultra-thin diamond-like carbon coatings using atomic force acoustic microscopy. Thin Solid Films 392(1), 75–84 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    M. Prasad et al., Measurement of Young’s modulus of clay minerals using atomic force acoustic microscopy. Geophys. Res. Lett. 29, 1172 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    T. Vanorio, M. Prasad, A. Nur, Elastic properties of dry clay mineral aggregates, suspensions and sandstones. Geophys. J. Int. 155, 319 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    D. Passeri et al., Atomic force acoustic microscopy characterization of nanostructured selenium-tin thin films. Superlattices Microstruct. 44(4–5), 641–649 (2008)Google Scholar
  22. 22.
    K. Yamanaka, S. Nakano, Quantitative elasticity evaluation by contact resonance in an atomic force microscope. Appl. Phys. a-Mater. Sci. Process. 66, S313–S317 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    E. Kester et al., Measurement of mechanical properties of nanoscaled ferrites using atomic force microscopy at ultrasonic frequencies. Nanostruct. Mater. 12, 779 (1999)CrossRefGoogle Scholar
  24. 24.
    H. Cunfu, Subsurface defect of the SiOx film imaged by atomic force acoustic microscopy. Opt. Lasers Eng. 48(11), 1108–1112 (2010)CrossRefGoogle Scholar
  25. 25.
    J.P. Killgore et al., Quantitative subsurface contact resonance force microscopy of model polymer nanocomposites. Nanotechnology 22(17), 175706 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    U. Rabe, Imaging and measurement of local mechanical material properties by atomic force acoustic microscopy. Surf. Interface Anal. 33(2), 65–70 (2002)CrossRefGoogle Scholar
  27. 27.
    G.S. Batog et al., Calculation of the thicknesses and elastic properties of thin-film coatings using atomic-force acoustic microscopy data. Tech. Phys. 51(8), 1084–1089 (2006)Google Scholar
  28. 28.
    G. Huajian, C. Cheng-Hsin, L. Jin, Elastic contact versus indentation modeling of multi-layered materials. Int. J. Solid. Struct. 29(20), 2471–2492 (1992)CrossRefGoogle Scholar
  29. 29.
    A. Kovalev et al., Nanomechanical probing of layered nanoscale polymer films with atomic force microscopy. J. Mater. Res. 19(3), 716–728 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    G.S. Kino, C.S. DeSilets, Design of slotted transducer arrays with matched backings. Ultrason. Imaging 1(3), 189–209 (1979)ADSCrossRefGoogle Scholar
  31. 31.
    B. Honein et al., Wave Propagation in Piezoelectric Layered Media with Some Applications. J. Intell. Mater. Syst. Struct. 2(4), 542–557 (1991)Google Scholar
  32. 32.
    H. Geisler, et al., in Elastic Mapping of Sub-surface Defects by Ultrasonic Force Microscopy: Limits of Depth Sensitivity, in Microscopy of Semiconducting Materials 2001, ed. by A.G. Cullis, J.L. Hutchison (Iop Publishing, Bristol, 2001), pp. 527–530Google Scholar
  33. 33.
    G. Batog et al., Calculation of the thicknesses and elastic properties of thin-film coatings using atomic-force acoustic microscopy data. Tech. Phys. 51(8), 1084–1089 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Electrical and Computer Engineering and G.W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Mechanical Engineering and Material ScienceDuke UniversityDurhamUSA

Personalised recommendations