Friction and Internal Friction Measurements by Atomic Force Acoustic Microscopy

  • A. Caron
  • W. Arnold
Part of the NanoScience and Technology book series (NANO)


Atomic force acoustic microscopy (AFAM) is a contact-resonance spectroscopy technique originally designed to determine elastic properties at the nanometer scale. While the load dependent shift of contact-resonance frequencies has been exploited to determine the elasticity of sample surfaces, less attention has been given to the damping of contact resonances. In this chapter, the authors show how the atomic force microscopy technique can be used to measure interfacial and internal friction by analyzing the Q-factor of contact-resonance curves.


Fatigued Nickel Quartz Anisotropy Graphite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The results presented in this chapter were obtained when the authors were with the Fraunhofer Institute for Non-Destructive Testing (IZFP) Saarbrücken, Germany (A.C and W.A.), and the Institute of Micro- and Nanomaterials (IMNM), University of Ulm, Ulm, Germany (A.C.).


  1. 1.
    V.B. Elings, J.A. Gurley, US Patent 5,266,801, (1993)Google Scholar
  2. 2.
    P. Maivald, H.J. Butt, S.A.C. Gould, C.B. Prater, B. Drake, J.A. Gurley, V.B. Elings, P.K. Hansma, Nanotechnology 2, 103 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    U. Rabe, K. Janser, W. Arnold, Rev. Sci. Instrum. 67, 3281 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    K. Yamanaka, A. Noguchi, T. Tsuji, T. Koike, T. Goto, Surf. Interf. Anal. 27, 600 (1999)CrossRefGoogle Scholar
  5. 5.
    U. Rabe, S. Amelio, E. Kester, V. Scherer, S. Hirsekorn, W. Arnold, Ultrasonics 38, 430 (2000)CrossRefGoogle Scholar
  6. 6.
    M. Kopynciska-Müller, A. Caron, S. Hirsekorn, U. Rabe, H. Natter, R. Hempelmann, R. Birringer, W. Arnold, Z. Phys. Chem. 222, 471 (2008)CrossRefGoogle Scholar
  7. 7.
    U. Rabe, Applied Scanning Probe Methods (Springer, Heidelberg, 2006), p. 90Google Scholar
  8. 8.
    D.C. Hurley, J.A. Turner, J. Appl. Phys. 102, 033509 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    F. Oulevey, G. Gremaud, A. Semoroz, A.J. Kulik, N.A. Burnham, E. Dupas, Rev. Sci. Instrum. 72, 3891 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    K. Yamanaka, Y. Maruyama, T. Tsuji, K. Nakomoto, Appl. Phys. Lett. 78, 1939 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    M. Reinstaedtler, U. Rabe, V. Scherer, U. Hartmann, A. Goldade, B. Bhushan, W. Arnold, Appl. Phys. Lett. 82, 2604 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    J.P. Den Hartog, Mechanical Vibrations (Dover Publication Inc., New York, 1985)Google Scholar
  13. 13.
    D.C. Hurley, M. Kopycinska-Mueller, A.B. Kos, R.H. Geiss, Meas. Sci. Technol. 16, 2167 (2005)CrossRefGoogle Scholar
  14. 14.
    T. Tsuji, S. Saito, K. Fukuda, K. Yamanaka, H. Ogiso, J. Akedo, Y. Kawakami, Appl. Phys. Lett. 87, 071909 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    A. Kumar, U. Rabe, W. Arnold, Jap. J. Appl. Phys. 47, 6077 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    J.A. Turner, S. Hirsekorn, U. Rabe, W. Arnold, J. Appl. Phys. 82, 966 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    P.A. Yuya, D.C. Hurley, J.A. Turner, J. Appl. Phys. 104, 074916 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    P.E. Mazeran, J.L. Loubet, Tribol. Lett. 3, 125 (1997)CrossRefGoogle Scholar
  19. 19.
    F.J. Espinoza-Beltrán, K. Geng, J. Muñoz-Saldanã , U. Rabe, S. Hirsekorn, W. Arnold, New J. Phys. 11, 083034 (2009)Google Scholar
  20. 20.
    F.J. Espinoza Beltrán, T. Scholz, G.A. Schneider, J. Munõz-Saldanã, U. Rabe, W. Arnold, J. Phys. Conf. Ser. 61, 293 (2007)Google Scholar
  21. 21.
    D. Passeri, A. Bettucci, M. Germano, M. Rossi, A. Alippi, A. Fiori, E. Tamburri, S. Orlanducci, M.L. Terranova, J.J. Vlassak, Microelectron. Eng. 84, 490 (2007)CrossRefGoogle Scholar
  22. 22.
    D. Passeri, A. Bettucci, M. Rossi, Anal. Bioanal. Chem. 396, 2769 (2010)CrossRefGoogle Scholar
  23. 23.
    I.N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 613 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    U. Rabe, M. Kopycinska, S. Hirsekorn, J. Munöz-Saldanä, G.A. Schneider, W. Arnold, J. Phys. D 35, 2621 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    M. Kopycinska-Müller, R.H. Geiss, D.C. Hurley, Ultramicroscopy 106, 466 (2006)CrossRefGoogle Scholar
  27. 27.
    D. Passeri, A. Bettucci, M. Germano, M. Rossi, A. Alippi, S. Orlanducci, M.L. Terranova, M. Ciavarella, Rev. Sci. Instrum. 76, 093904 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)zbMATHGoogle Scholar
  29. 29.
    A. Caron, Akustische Rasterkraftmikroskopie an nanokristallinem Nickel: Von der Elastizitaet zum elastisch-plastischen Uebergang, Ph.D. Thesis, Science and Technical Faculty III, Saarland University, Germany (2009) (unpublished)Google Scholar
  30. 30.
    S. Amelio, A.V. Goldade, U. Rabe, V. Scherer, B. Bhushan, W. Arnold, Thin Solid Films 392, 75 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    G. Stan, R.F. Cook, Nanotechnology 19, 235701 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    B. Bhushan, Diam. Relat. Mater. 8, 1985 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    X. Li, B. Bhushan, J. Mater. Res. 14, 2328 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    D. Schneider, T. Schwarz, H.J. Scheibe, M. Panzner, Thin Solid Films 295, 107 (1997)ADSCrossRefGoogle Scholar
  35. 35.
    G. Kopycinska-Müller, R.H. Geiss, J. Müller, D.C. Hurley, Nanotechnology 16, 703 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    B. Yang, Grain size effects on the mechanical behaviour of polycrystalline nickel from micro to nanoscale, Ph.D. Thesis, Science and Technical Faculty III, Saarland University, 2006. Shaker, ISBN 978-3-8322-5833-7 (2007)Google Scholar
  37. 37.
    B. Yang, H. Vehoff, A. Barnoush, Z. Phys. Chem. 222, 499 (2008)CrossRefGoogle Scholar
  38. 38.
    K. Fujiwara, H. Tanimoto, M. Mizubayashi, Mater. Sci. Eng. A 442, 336 (2006)CrossRefGoogle Scholar
  39. 39.
    Y. Zhou, U. Erb, K.T. Aust, G. Palumbo, Z. Metallk. 94, 10 (2003)Google Scholar
  40. 40.
    T.D. Shen, C.C. Koch, T.Y. Tsui, G.M. Pharr, J. Mater. Res. 6, 1012 (1991)CrossRefGoogle Scholar
  41. 41.
    J. Tian, H. Ogi, M. Hirao, Appl. Phys. Lett. 87, 204107 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    H. Wagner, D. Bedorf, S. Küchemann, M. Schwabe, B. Zhang, W. Arnold, K. Samwer, Nat. Mater. 10, 1–4 (2011)CrossRefGoogle Scholar
  43. 43.
    A. Caron, W. Arnold, Acta Mater. 57, 4353 (2009)CrossRefGoogle Scholar
  44. 44.
    N. Burnham, A.J. Kulik, G. Gremaud, P.J. Gallo, F. Oulevey, J. Vac. Sci. Technol. B 14, 794 (1996)CrossRefGoogle Scholar
  45. 45.
    U. Rabe, Akustische kraftmikroskopie im ultraschallfrequenzbereich, Ph.D. Thesis, Technical Faculty, Saarland University, 1996, (unpublished)Google Scholar
  46. 46.
    M.C. Junger, D. Feit, Sound, Structures and Their Interactions (MIT Press, Cambridge, 1972)Google Scholar
  47. 47.
    P.A. Yuya, D.C. Hurley, J.A. Turner, J. Appl. Phys. 109, 113528 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    H. Ogi, H. Niho, M. Hirao, Appl. Phys. Lett. 88, 141110 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    C. Suryanarayana, D. Mukhopadhyasay, S.N. Patankar, F.H. Froes, J. Mater. Res. 7, 2114 (1992)ADSCrossRefGoogle Scholar
  50. 50.
    A.H. Chokshi, A. Rosen, J. Karch, H. Gleiter, Scripta Metall. 23, 1679 (1989)CrossRefGoogle Scholar
  51. 51.
    R.O. Scattergood, C.C. Koch, Scripta Metall. Mater. 27, 1195 (1992)CrossRefGoogle Scholar
  52. 52.
    M. Gutkin, I. Ovid’ko, I.M. Gutkin, Plastic Deformation of Nanocrystalline Materials (Springer, Berlin, 2004)Google Scholar
  53. 53.
    B. Yang, H. Vehoff, Mater. Sci. Eng. A 400–401, 467 (2005)Google Scholar
  54. 54.
    D. Hull, D.J. Bacon, Introduction to Dislocations (Pergamon Press, Oxford, 1965)Google Scholar
  55. 55.
    A.J. Haslam, V. Yamakov, D. Moldovan, D. Wolf, S.R. Phillpot, H. Gleiter, Acta Mater. 52, 1971 (2004)CrossRefGoogle Scholar
  56. 56.
    A.J. Haslam, D. Moldovan, V. Yamakov, D. Wolf, S.R. Phillpot, H. Gleiter, Acta Mater. 51, 2097 (2003)CrossRefGoogle Scholar
  57. 57.
    A.G. Froseth, P.M. Derlet, H. Van Swygenhoven, Acta Mater 52, 5863 (2004)CrossRefGoogle Scholar
  58. 58.
    D. Wolf, V. Yamakov, S.R. Pillpot, A. Mukherjee, H. Gleiter, Acta Mater. 53, 1 (2005)CrossRefGoogle Scholar
  59. 59.
    J. Schiotz, F.D. Di Tolla, K. Jakobsen, Nature 391, 561 (1998)ADSCrossRefGoogle Scholar
  60. 60.
    E.T. Lilleoden, J.A. Zimmerman, S.M. Foiles, W.D. Nix, J. Mater. Res. 51, 901 (2003)Google Scholar
  61. 61.
    D. Fechtinger, P.M. Derlet, H. Van Swygenhoven, Phys. Rev. B 67, 024113 (2003)ADSCrossRefGoogle Scholar
  62. 62.
    T. Tsuji, H. Irihama, T. Mihara, K. Yamanaka, Key Eng. Mater. 262–263, 1067 (2004)CrossRefGoogle Scholar
  63. 63.
    T.A. Michalske, J.E. Houston, Acta Mater. 46, 391 (1998)CrossRefGoogle Scholar
  64. 64.
    J.P. Hirth, J. Lothe, Theory of Dislocations (Krieger, Malabar, 1982)Google Scholar
  65. 65.
    V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, H. Gleiter, Acta Mater. 49, 2713 (2001)CrossRefGoogle Scholar
  66. 66.
    J.C.M. Li, J. Appl. Phys. 32, 525 (1961)ADSCrossRefGoogle Scholar
  67. 67.
    H. Gleiter, J. Less-Common Met. 28, 297 (1972)CrossRefGoogle Scholar
  68. 68.
    C.W. Price, J.P. Hirth, Mater. Sci. Eng. 9, 15 (1972)CrossRefGoogle Scholar
  69. 69.
    W.A. Soer, K.E. Aifantis, JThM De Hosson, Acta Mater. 53, 4665 (2005)CrossRefGoogle Scholar
  70. 70.
    A.S. Nowick, B.S. Berry, Anelastic Relaxation of Solids (Academic Press, New York, 1972)Google Scholar
  71. 71.
    R.T. Beyer, S.V. Letcher, Physical Ultrasonics (Academic Press, New York, 1969)Google Scholar
  72. 72.
    B. Lüthi, Physical Acoustics in the Solid State (Springer, Berlin, 2007)Google Scholar
  73. 73.
    A. Bhatia, Ultrasonic Absorption (Oxford University Press, Oxford, 1967)Google Scholar
  74. 74.
    A.V. Granato, K. Lücke, J. Appl. Phys. 27, 583 (1956)ADSCrossRefzbMATHGoogle Scholar
  75. 75.
    Z. Budrovic, H. Van Swygenhoven, P.M. Derlet, S. Van Petegem, B. Schmitt, Science 304, 273 (2004)ADSCrossRefGoogle Scholar
  76. 76.
    B. Bhushan (ed.), Nanomechanics and Nanotribology, 2nd edn. (Springer, Berlin, 2008)Google Scholar
  77. 77.
    E. Gnecco, E. Meyer (eds.), Fundamentals of Friction and Wear on the Nanoscale (Springer, Berlin, 2007)Google Scholar
  78. 78.
    T. Göddenhenrich, S. Müller, C. Heiden, Rev. Sci. Instrum. 65, 2870 (1994)ADSCrossRefGoogle Scholar
  79. 79.
    A. Caron, W. Arnold, H.-J. Fecht, Jap. J. Appl. Phys. 49, 120204 (2010)ADSCrossRefGoogle Scholar
  80. 80.
    R. Truell, C. Elbaum, B.B. Chick, Ultrasonic Methods in Solid State Physics (Academic, New York, 1969)Google Scholar
  81. 81.
    D. Schneider, T. Schwarz, H.-J. Scheibe, M. Panzner, Thin Solid Films 295, 107 (1997)ADSCrossRefGoogle Scholar
  82. 82.
  83. 83.
    P.E. Mazeran, J.L. Loubet, Tribol. Lett. 7, 199 (1999)CrossRefGoogle Scholar
  84. 84.
    M.A. Lantz, S.J. O’Shea, M.E. Welland, K.L. Johnson, Phys. Rev. B 55, 10776 (1997)ADSCrossRefGoogle Scholar
  85. 85.
    P.E. Mazeran, M. Beyaoui, Tribol. Lett. 30, 1 (2008)CrossRefGoogle Scholar
  86. 86.
    R.D. Mindlin, W.P. Mason, J.F. Osmer, H. Deresiewicz, in Proceeding of the 1st US National Congress Applied Mechanics, ed. by E. Sternberg. (E. Brothers, Ann Harbor, 1952), p. 203Google Scholar
  87. 87.
    B. Bhushan, Nanotribology, Nanomechanics and Materials Characterization in Nanotribology and Nanomechanics, 2nd edn, ed. by B. Bhushan (Springer, Berlin, 2008), pp. 311–416Google Scholar
  88. 88.
    E. Gnecco, R. Bennewitz, O. Pfeiffer, A. Socoliuc, E. Meyer, Friction and Wear on the Atomic Scale in Nanotribology and Nanomechanics, 2nd edn, ed. by B. Bhushan (Springer, Berlin, 2008), pp. 557–605Google Scholar
  89. 89.
    O. Zwoerner, H. Hoelscher, U.D. Schwarz, R. Wiesendanger, Appl. Phys. A 66, 263 (1998)ADSCrossRefGoogle Scholar
  90. 90.
    R. Bennewitz, T. Gyalog, M. Guggisberg, M. Bammerlin, E. Meyer, H.-J. Guentherodt, Phys. Rev. B 60, R11301 (1999)ADSCrossRefGoogle Scholar
  91. 91.
    E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer, J. Guentherodt, Phys. Rev. Lett. 84, 1172 (2000)ADSCrossRefGoogle Scholar
  92. 92.
    N.S. Tambe, B. Bhushan, Nanotechnology 15, 1561 (2004)ADSCrossRefGoogle Scholar
  93. 93.
    N.S. Tambe, B. Bhushan, Nanotechnology 16, 2309 (2005)ADSCrossRefGoogle Scholar
  94. 94.
    F. Dinelli, S.K. Biswas, G.A.D. Briggs, O.V. Kolosov, Appl. Phys. Lett. 71, 1177 (1997)ADSCrossRefGoogle Scholar
  95. 95.
    M.T. Cuberes, Nanoscale Friction and Ultrasonics in Fundamentals of Friction and Wear on the Nanoscale, ed. by E. Gnecco, E. Meyer (Springer, Berlin, 2007), pp. 49–71, and references thereinGoogle Scholar
  96. 96.
    V. Scherer, B. Bhushan, U. Rabe, W. Arnold, IEEE Trans. Magn. 33, 4077 (1997)ADSCrossRefGoogle Scholar
  97. 97.
    V. Scherer, W. Arnold, B. Bhushan, Surf. Interface Anal. 27, 578 (1999)CrossRefGoogle Scholar
  98. 98.
    K. Goebbels, in Research techniques in NDT, vol. IV, ed. by R.S. Sharpe (Academic Press, New York, 1980), p. 87Google Scholar
  99. 99.
    S. Luxenburger, W. Arnold, Ultrasonics 40, 797 (2002)CrossRefGoogle Scholar
  100. 100.
    I.A. Inman, S. Datta, H.L. Du, J.S. Burnell-Gray, Q. Luo, Wear 254, 461 (2003)CrossRefGoogle Scholar
  101. 101.
    C.H. Hager Jr, J. Hu, C. Muratore, A.A. Voevodin, R. Grandhi, Wear 268, 1195 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.INM – Leibniz-Institute for New MaterialsSaarbrückenGermany
  2. 2.WPI-Advanced Institute of Materials ResearchTohoku UniversitySendaiJapan
  3. 3.Department of MaterialsSaarland UniversitySaarbrückenGermany

Personalised recommendations