Advertisement

Data Processing for Acoustic Probe Microscopy Techniques

  • F. Marinello
  • D. Passeri
  • P. Schiavuta
  • E. Savio
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

One of the merits of acoustic probe microscopy techniques is the possibility of exploiting traceable quantitative mechanical characterization of surfaces. To this end, after measurement proper data processing is needed in order to eliminate or compensate artifacts and distortions and eventually optimize extrapolated information. This chapter discusses the main points of data post processing, providing hints and strategies for repeatable analysis of surface data sets.

Keywords

Dioxide Polypropylene Styrene Convolution Methacrylate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Dinelli, M.R. Castell, D.A. Ritchie, N.J. Mason, G.A.D. Briggs, O.V. Kolosov, Mapping surface elastic properties of stiff and compliant materials on the nanoscale using ultrasonic force microscopy. Philos. Mag. a-Phys. Cond. Matter Struct. Defects Mech. Prop. 80, 2299–323 (2000)Google Scholar
  2. 2.
    F. Dinelli, S.K. Biswas, G.A.D. Briggs, O.V. Kolosov, Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy. Phys. Rev. B 61, 13995–4006 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    A.P. McGuigan, B.D. Huey, G.A.D. Briggs, O.V. Kolosov, Y. Tsukahara, M. Yanaka, Measurement of debonding in cracked nanocomposite films by ultrasonic force microscopy. Appl. Phys. Lett. 80, 1180–2 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    O.V. Kolosov, I. Grishin, R. Jones, Material sensitive scanning probe microscopy of subsurface semiconductor nanostructures via beam exit Ar ion polishing. Nanotechnology 22, 8 (2011)CrossRefGoogle Scholar
  5. 5.
    D.C. Hurley, M. Kopycinska-Muller, A.B. Kos, R.H. Geiss, Nanoscale elastic-property measurements and mapping using atomic force acoustic microscopy methods. Meas. Sci. Technol. 16, 2167–2172 (2005)CrossRefGoogle Scholar
  6. 6.
    M. Kopycinska-Müller, A. Caron, S. Hirsekorn, U. Rabe, N. Natter, R. Hempelmann, R. Birringer, W. Arnold, Quantitative evaluation of elastic properties of nano-crystalline nickel using atomic force acoustic microscopy AFM modeling MST. Z. Phys. Chem. 222, 471–498 (2008)CrossRefGoogle Scholar
  7. 7.
    U. Rabe, S. Amelio, E. Kester, V. Scherer, S. Hirsekorn, W. Arnold, Quantitative determination of contact stiffness using atomic force acoustic microscopy. Ultrasonics 38(1–8), 430–437 (2000)CrossRefGoogle Scholar
  8. 8.
    E. Kester, U. Rabe, L. Presmanes, P. Tailhades, W. Arnold, Measurement of mechanical properties of nanoscaled ferrites using atomic force microscopy at ultrasonic frequencies. Nanostruct. Mater. 12(5–8), 779–782 (1999)CrossRefGoogle Scholar
  9. 9.
    P. Vairac, B. Cretin, Scanning microdeformation microscopy: experimental investigations on non-linear contact spectroscopy. Surf. Interface Anal. 27, 588 (1999)CrossRefGoogle Scholar
  10. 10.
    P. Vairac, B. Cretin, in Scanning Microdeformation Microscopy: Subsurface Imaging and Measurement of Elastic Constants at Mesoscopic Scale, Applied Scanning Probe Methods II, ed. by B. Bhushan, H. Fuchs, (Springer, Berlin, 2006) pp. 241–281Google Scholar
  11. 11.
    P. Vairac, S. Ballandras, B. Cretin, Finite element analysis of the behavior of the scanning microdeformation microscope. Ultrason. Ferroelectr. Freq. Control 48(4), 895–899 (2001)Google Scholar
  12. 12.
    S. Avasthy, G. Shekhawat, V. Dravid, Scanning near-field ultrasound holography. in: Meyers Encyclopedia of analytical chemistry: supplementary volumes S1–S3 : applications, theory and instrumentation, vol. a9146, ed. by A. Robert (Wiley, Hoboken, 2010), pp. 1–9Google Scholar
  13. 13.
    G. Shekhawat, V. Dravid, Seeing the invisible: scanning near-field ultrasound holography (SNFUH) for high resolution sub-surface imaging. Microsc. Microanal. 12(S02), 1214–1215 (2006)Google Scholar
  14. 14.
    G. Shekhawat, V. Dravid, Nanoscale imaging of buried structures via scanning near-field ultrasound holography. Science 310(5745), 89–92 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    G. Shekhawat, S. Avasthy, A. Srivastava, S.H. Tark, V. Dravid, Probing buried defects in extreme ultraviolet multilayer blanks using ultrasound holography. IEEE Trans. Nanotechnol. 9(6), 671–674 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Liu, S. Chen, E. Zussman, C.S. Korach, W. Zhao, M.H. Rafailovich, Diameter-dependent modulus and melting point behavior in electrospun semi-crystalline polymer fibers. Macromolecules 44(11), 4439–4444 (2011)Google Scholar
  17. 17.
    D. Passeri, M. Rossi, A. Alippi, A. Bettucci, M.L. Terranova, E. Tamburri, F. Toschi, Characterization of epoxy/single-walled carbon nanotubes composite samples via atomic force acoustic microscopy. Physica E 40, 2419–2424 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    W. Zhao, CS. Korach, Measurement of Epoxy Stiffness by Atomic Force Acoustic Microscopy. Proceedings ASME 2009 International Mechanical Engineering Congress and Exposition, Vol. 12: Micro and Nano Systems, Part A and B, 85–87, 2009Google Scholar
  19. 19.
    A. Ebert, B.R. Tittmann, J. Du, W. Scheuchenzuber, Technique for rapid in vitro single-cell elastography. J. Ultrasound Med. Biol. 32(11), 1687–1702 (2006)Google Scholar
  20. 20.
    C. Miyasaka, B.R. Tittmann, Ultrasonic Atomic Force Microscopy on Spray Dried Ceramic Powder. in Acoustic Imaging, vol. 27, ed. by W. Arnold, S. Hirsekorn (Kluver Academic Publishers, Dordrecht, Netherlands, 2004), pp. 715–720Google Scholar
  21. 21.
    D. Doroski, B.R. Tittmann, C. Miyasaka, Study of biomedical specimens using scanning acoustic microscopy. Acoust. Imaging 28(1), 13–20 (2007)Google Scholar
  22. 22.
    F. Marinello, P. Bariani, S. Carmignato, E. Savio, Geometrical modelling of scanning probe microscopes and characterization of errors. Meas. Sci. Technol. 20(8), 084013 (2009)Google Scholar
  23. 23.
    F. Marinello, E. Savio, Use of cylindrical artefacts for AFM vertical calibration. Meas. Sci. Technol. 18(2), 462–468 (2007)Google Scholar
  24. 24.
    J. Garnaes, A. Kule, L. Nielsen, F. Borsetto, True three-Dimensional Calibration of closed loop scanning probe microscopes. in Nanoscale Calibration Standards and Methods: Dimensional and Related Measurements in the Micro- and Nanometer Range, ed. by G. Wilkening, L. Koenders (Berlin, Wiley-VCH, 2004), pp. 193–204Google Scholar
  25. 25.
    F. Marinello, P. Schiavuta, S. Vezzù, A. Patelli, S. Carmignato, E. Savio, Atomic force acoustic microscopy for quantitative nanomechanical characterization. Wear 271(3–4), 534–538 (2011)Google Scholar
  26. 26.
    Scanning Probe Image Processor (SPIP\({\texttrademark}\), developed by Image Metrology A/S, www.imagemet.com
  27. 27.
    Window Scanning x Microscope (WSxM), developed by Nanotec Electronica, www.nanotec.es
  28. 28.
    F. Marinello, Atomic Force Microscopy in nanometrology: modeling and enhancement of the instrument. Ph.D dissertation, University of Padova and Technical University of Denmark, (2007) http://paduaresearch.cab.unipd.it/1295/01/PhD_Thesis_Marinello.pdf
  29. 29.
    R. Arinéro, G. Leveque, P. Girard, J.Y. Ferrandis, Image processing for resonance frequency mapping in atomic force modulation microscopy. Rev. Sci. Instrum. 78, 023703 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    R.V. Gainutdinov, P.A. Arutyunov, Artifacts in atomic force microscopy. Russ. Microelectron. 30(4), 219–224 (2001)Google Scholar
  31. 31.
    T.G. Lenihan, A.P. Malshe, W.D. Brown, L.W. Schaper, Artifacts in SPM measurements of thin films and coatings. Thin Solid Films 270, 356–361 (1995)Google Scholar
  32. 32.
    ASTM E 1813-96, Standard practice for measuring and reporting probe tip shape in scanning probe microscopy, (1998), pp. 1–11, (reapproved 2002)Google Scholar
  33. 33.
    H.U. Danzebrink, L. Koenders, G. Wilkening, A. Yacoot, H. Kunzmann, Advances in scanning force microscopy for dimensional metrology. Keynote paper Ann. CIRP 55(2), 841–878 (2006)Google Scholar
  34. 34.
    D. Kim, D.Y. Lee, D.G. Gweon, A new nano-accuracy AFM system for minimizing Abbe errors and the evaluation of its measuring uncertainty. Ultramicroscopy 107(4–5), 322–328 (2007)Google Scholar
  35. 35.
    L. Mingzhen, G. Sitian, J. Qihai, C. Jianjun, D. Hua, G. Hongtang, An atomic force microscope head designed for nanometrology. Meas. Sci. Technol. 18(6), 1735–1739 (2007)Google Scholar
  36. 36.
    J.F. Jorgensen, C.P. Jensen, J. Garnaes, Lateral metrology using scanning probe microscopes, 2D pitch standards and image processing. Appl. Phys. A 66, 847–852 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    A. Sikora, Correction of structure width measurements performed with a combined shear-force/tunnelling microscope. Meas. Sci. Technol. 18(2), 456–461 (2007)Google Scholar
  38. 38.
    F. Marinello, S. Carmignato, A. Voltan, E. Savio, L. De Chiffre, Error sources in atomic force microscopy for dimensional measurements: taxonomy and modeling. ASME—J. Manuf. Sci. Eng. 132(3), 031003–1-8 (2010)Google Scholar
  39. 39.
    F. Marinello, P. Schiavuta, S. Carmignato, E. Savio, Critical factors in quantitative atomic force acoustic microscopy. CIRP J. Manuf. Sci. Technol. 3(1), 49–54 (2010)Google Scholar
  40. 40.
    J.S. Villarrubia, Algorithms for scanned probe mocroscope image simulation, surface reconstruction, and tip estimation. J. Res. Natl. Inst. Stand. Technol. 102(4), 425–454 (1997)Google Scholar
  41. 41.
    J.S. Villarrubia, Morphological estimation of tip geometry for scanner probe microscopy. Surface Sci. 321(3), 287–300 (1994)Google Scholar
  42. 42.
    M. Kopycinska-Müller, R.H. Geiss, D.C. Hurley, Contact mechanics and tip shape in AFM-based nanomechanical measurements. Ultramicroscopy 106, 466–474 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • F. Marinello
    • 1
  • D. Passeri
    • 2
  • P. Schiavuta
    • 3
  • E. Savio
    • 4
  1. 1.TeSAF, Department of Land, Environment, Agriculture and ForestryUniversity of PaduaLegnaro (Padua)Italy
  2. 2.BASE, Department of Basic and Applied Sciences for EngineeringUniversity of Rome SapienzaRomeItaly
  3. 3.Interuniversity Consortium for Nanotechnology of the Veneto RegionCIVEN AssociationMarghera (Venezia)Italy
  4. 4.DII, Department of Industrial EngineeringUniversity of PaduaPaduaItaly

Personalised recommendations