Skip to main content

Scanning Near-Field Ultrasound Holography

  • Chapter
  • First Online:
Acoustic Scanning Probe Microscopy

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Non-invasive nanoscale characterization is becoming exceedingly important to study complex nanosystems, such as dynamic biological processes controlled by nanosized subcellular components and microelectronic devices with nano-sized components that control their operation. Scanning Probe Microscopy (SPM) is a technique that has been shown to have the capability to adapt to surface characterization of several material properties in a non-destructive manner. Scanning Near-Field Ultrasound Holography (SNFUH) is a Scanning Probe Microscopy (SPM) based technique that employs ultrasonic waves for characterization of elastic properties of the surface as well as subsurface materials in a studied system. The characterization method involves launch of ultrasonic plane waves through the bottom of a sample and ultrasonic excitation of the SPM cantilever probe tip with piezoelectric transducers. Phase signal of the difference in excitation frequency between the sample and tip is recorded as an image. The phase contrast in the image is contributed to by both the near-field ultrasonic wave scattering and surface tip-sample interactions. SNFUH has already been demonstrated to be able to characterize elastic properties of not only hard but also soft material systems. Development of this method by further understanding its operation principles and contrast mechanisms will help to integrate it as a mainstream nanoscale characterization method for any system with hard and soft materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.Y. Sokolov, Ultraacoustic methods of studying properties of hardened steel and detecting intrinsic flaws of metal articles. Zhurnal Tekhnicheskoi Fiziki. XI(1–2), 160–169 (1941)

    Google Scholar 

  2. S.Y. Sokolov, The ultrasonic microscope. Doklady Akademia Nauk SSSR. 64, 333 (1949)

    Google Scholar 

  3. R.A. Lemons, C.F. Quate, A scanning acoustic microscope. in Proceedings of the IEEE Ultrasonics Symposium, 1973, p. 18–21

    Google Scholar 

  4. R.A. Lemons, C.F. Quate, Acoustic microscope—scanning version. Appl. Phys. Lett. 24(4), 163–165 (1974)

    Article  ADS  Google Scholar 

  5. L.W. Kessler, A. Korpel, P.R. Palermo, Simultaneous acoustic and optical microscopy of biological specimens. Nature 239, 111–112 (1972)

    Google Scholar 

  6. A. Korpel, L.W. Kessler, P.R. Palermo, Acoustic microscope operating at 100 Mhz. Nature 232(5306), 110–111 (1971)

    Google Scholar 

  7. L.W. Kessler, A. Korpel, Acoustic imaging with a focused light beam. J. Acoust. Soc. Am. 47(1A), 81 (1970)

    Google Scholar 

  8. Andrew Briggs, Acoustic microscopy—a Summary. Rep. Prog. Phys. 55(7), 851–909 (1992)

    Article  ADS  Google Scholar 

  9. Paul A. Reinholdtsen, Butrus T. Khuriyakub, Image-processing for a scanning acoustic microscope that measures amplitude and phase. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38(2), 141–147 (1991)

    Article  Google Scholar 

  10. O.V. Kolosov, K. Yamanaka, Nonlinear detection of ultrasonic vibrations in an atomic-force microscope. Jpn. J. Appl. Phys. Part 2 Lett. 32(8A), L1095–L1098 (1993)

    Google Scholar 

  11. U. Rabe, W. Arnold, Acoustic microscopy by atomic-force microscopy. Appl. Phys. Lett. 64(12), 1493–1495 (1994)

    Google Scholar 

  12. V. Dravid, G. Shekhawat, Seeing the invisible: non-destructive subsurface nanoscale metrology with scanning near-field ultrasound holography. Small Times 9(2) (2010)

    Google Scholar 

  13. V.E. Borisenko, S. Ossicini, What is What in the Nanoworld : a handbook on nanoscience and nanotechnology, 2nd edn. (Wiley, Weinheim, 2008), p. 522

    Google Scholar 

  14. Kazushi Yamanaka, Hisato Ogiso, Oleg V. Kolosov, Ultrasonic force microscopy for nanometer esolution subsurface imaging. Appl. Phys. Lett. 64(2), 178–180 (1994)

    Article  ADS  Google Scholar 

  15. F. Dinelli, S.K. Biswas, G.A.D. Briggs, O.V. Kolosov, Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy. Phys. Rev. B 61(20), 13995–14006 (2000)

    Article  ADS  Google Scholar 

  16. S. Avasthy, G. Shekhawat, V. Dravid, in Scanning near-field ultrasound holography, ed. by R.A. Meyers. Encyclopedia of Analytical Chemistry: supplementary volumes S1–S3 : applications, theory and instrumentation (Wiley, Hoboken, 2010), a9146, pp. 1–9

    Google Scholar 

  17. K. Inagaki, O.V. Kolosov, G.A.D. Briggs, O.B. Wright, Waveguide ultrasonic force microscopy at 60 MHz. Appl. Phys. Lett. 76(14), 1836–1838 (2000)

    Google Scholar 

  18. K. Inagaki, O.V. Kolosov, G.A.D. Briggs, S. Muto, Y. Horisaki, O.B. Wright. Ultrasonic force microscopy in waveguide mode up to 100 MHz. in Proceedings of the IEEE Ultrasonics Symposium, Vols. 1 and 2 (1998), p. 1255–1259

    Google Scholar 

  19. O.V. Kolosov, M.R. Castell, C.D. Marsh, G.A.D. Briggs, Imaging the elastic nanostructure of Ge islands by ultrasonic force microscopy. Phys. Rev. Lett. 81(5), 1046–1049 (1998)

    Google Scholar 

  20. O. Kolosov, A. Briggs, K. Yamanaka, W. Arnold, in Nanoscale imaging of mechanical-properties by ultrasonic force microscopy (UFM), eds. by P. Tortoli, L. Masotti. Acoustical Imaging, vol. 22 (Plenum Press, New York, 1996), p. 665–668

    Google Scholar 

  21. K. Yamanaka, H. Ogiso, O.V. Kolosov, Analysis of subsurface imaging and effect of contact elasticity in the ultrasonic force microscope. Jpn. J. Appl. Phys. Part 1-Regul. Pap. Short Notes Rev. Pap. 33(5B), 3197–3203 (1994)

    Google Scholar 

  22. U. Rabe, S. Amelio, M. Kopycinska, S. Hirsekorn, M. Kempf, M. Göken, W. Arnold, Imaging and measurement of local mechanical material properties by atomic force acoustic microscopy. Surf. Interface Anal. 33, 65–70 (2002)

    Google Scholar 

  23. D.C. Hurley, M. Kopycinska-Muller, A.B. Kos, Mapping mechanical properties on the nanoscale using atomic-force acoustic microscopy. J. Miner. 59(1), 23–29 (2007)

    Google Scholar 

  24. D.C. Hurley, M. Kopycinska-Müller, A.B. Kos, R.H. Geiss, Nanoscale elastic-property measurements and mapping using atomic force acoustic microscopy methods. Meas. Sci. Technol. 16(11), 2167–2172 (2005)

    Google Scholar 

  25. D.C. Hurley, K. Shen, N.M. Jennett and Joseph A. Turner, Atomic force acoustic microscopy methods to determine thin-film elastic properties. J. Appl. Phys. 94(4), 2347–2354 (2003)

    Google Scholar 

  26. U. Rabe, K. Janser, W. Arnold, Acoustic microscopy with resolution in the nm-range. in Proceedings of 24th International Symposium on Acoustical Imaging, vol. 22 (1996), p. 669–676

    Google Scholar 

  27. U. Rabe, K. Janser, W. Arnold, Vibrations of free and surface-coupled atomic force microscope cantilevers: theory and experiment. Rev. Sci. Instrum. 67(9), 3281–3293 (1996)

    Google Scholar 

  28. U. Rabe, M. Dvorak, W. Arnold, The atomic-force microscope as a near-field probe for ultrasound. Thin Solid Films 264(2), 165–168 (1995)

    Google Scholar 

  29. D.C. Hurley, in NanoScience and Technology, ed. by B. Bhushan, F. Harald. Applied Scanning Probe Methods I, Vol. XI (Springer, New York, 2009)

    Google Scholar 

  30. M. Teresa Cuberes, H.E Assender, A. Briggs, O.V. Kolosov, Heterodyne force microscopy of PMMA/rubber nanocomposites: nanomapping of viscoelastic response at ultrasonic frequencies. J. Phys. D Appl. Phys. 33(19), 2347–2355 (2000)

    Google Scholar 

  31. M. Teresa Cuberes, Intermittent-Contact heterodyne force microscopy. J. Nanomater. 2009(762016), 1–5 (2009)

    Google Scholar 

  32. S.A. Cantrell, J.H. Cantrell, P.T. Lillehei, Nanoscale subsurface imaging via resonant difference-frequency atomic force ultrasonic microscopy. J. Appl. Phys. 101(11), 114324–114324-8 (2007)

    Google Scholar 

  33. J.H. Cantrell, S.A. Cantrell, Analytical model of the nonlinear dynamics of cantilever tip-sample surface interactions for various acoustic atomic force microscopies. Phys. Rev. B 77(16) 165409, 1–16 (2008)

    Google Scholar 

  34. S. Avasthy, J.H. Kim, G. Shekhawat, S.P. Shah, V.P Dravid, Improving accuracy of nanoscale mechanical property imaging with AFM-based contact resonance force microscopy (2011) (submitted)

    Google Scholar 

  35. G. Shekhawat, A. Srivastava, S. Avasthy, V.P. Dravid, Ultrasound holography for noninvasive imaging of buried defects and interfaces for advanced interconnect architectures. Appl. Phys. Lett. 95(263101), 1–3 (2009)

    Google Scholar 

  36. L. Tetard, A. Passian, K.T. Venmar, R.M. Lynch, B.H. Voy, G. Shekhawat, V.P. Dravid, T. Thundat, Imaging nanoparticles in cells by nanomechanical holography. Nat. Nanotechnol. 3(8), 501–505 (2008)

    Google Scholar 

  37. L. Tetard, A. Passian, R.M. Lynch, B.H. Voy, G. Shekhawat, V. Dravid, T. Thundat, Elastic phase response of silica nanoparticles buried in soft matter. Appl. Phys. Lett. 93(13), 133113, 1–3 (2008)

    Google Scholar 

  38. G. Shekhawat, V. Dravid, Seeing the invisible: scanning near-field ultrasound holography (SNFUH) for high resolution sub-surface imaging. Microsc. Microanal. 12(S02), 1214–1215 (2006)

    Google Scholar 

  39. G. Shekhawat, V.P. Dravid, Nanoscale imaging of buried structures via scanning near-field ultrasound holography. Science 310(5745), 89–92 (2005)

    Google Scholar 

  40. S.G. Pierce, B. Culshaw, Q. Shan, Laser generation and detection of ultrasound for materials characterisation, in International Conference on Applied Optical Metrology, vol. 3407 (1998), p. 437–442

    Google Scholar 

  41. W. Arnold, Generation of Ultrasound by Short Laser-Pulses and Its Application in Physics and NDE. Acta Physica Slovaca 36(1), 5–16 (1986)

    Google Scholar 

  42. Ch. Thomas, R. Heiderhoff, L.J. Balk, Acoustic near-field conditions in an ESEM/AFM hybrid system. J. Phys. Conf. Ser. 61, 1180–1185 (2007)

    Article  ADS  Google Scholar 

  43. Semiconductor Research Corporation, ITRS Grand Challenges (2007), Available from: http://www.src.org/program/grc/about/grand-challenges/2007/

  44. A.C. Diebold, Metrology for Emerging Materials, Devices, and Structures. International Conference on Frontiers of Characterization and Metrology for Nanoelectronics, University at Albany, New York, 2009

    Google Scholar 

  45. C.M. Garner, E.M. Vogel, Metrology challenges for emerging research devices and materials. IEEE Trans. Semicond. Manuf. 19(4), 397–403 (2006)

    Google Scholar 

  46. B. Fay, Advanced optical lithography development from UV to EUV. Microelectron. Eng. 61–62, 11–24 (2002)

    Google Scholar 

  47. T. Liang, E. Ultanir, G. Zhang, S-J. Park, E. Anderson, E. Gullikson, P. Naulleau, F. Salmassi, P. Mirkarimi, E. Spiller, S. Baker, Growth and printability of multilayer phase defects on extreme ultraviolet mask blanks. J. Vacuum Sci. Technol. B 25(6), 2098–2103 (2007)

    Google Scholar 

  48. T. Liang, P. Sanchez, G. Zhang, E. Shu, R. Nagpal, A. Stivers, Understanding and reduction of defects on finished EUV masks. in Proceedings of the Metrology, Inspection, and Process Control for Microlithography XIX, Pts 1–3, vol. 5752 (2005) pp. 654–662

    Google Scholar 

  49. E.M. Gullikson, S. Mrowka, B.B. Kaufmann, Recent developments in EUV reflectometry at the advanced light source. Emerg. Lithog. Technol. V 4343, 363–373 (2001)

    Google Scholar 

  50. G. Shekhawat, S. Avasthy, A. Srivastava, S-H. Tark, V. Dravid, Probing buried defects in extreme ultraviolet multilayer blanks using ultrasound holography. IEEE Trans. Nanotechnol. 9(6), 671–674 (2010)

    Google Scholar 

  51. A. Diebold, Subsurface imaging with scanning ultrasound holography. Science 310(5745), 61–62 (2005)

    Google Scholar 

  52. Y. Su, Z. Fan, K. Xu, Y. Jianquan, R.K. Wang, A photoacoustic tomography system for imaging of biological tissues. J. Phys. D Appl. Phys. 38, 2640–2644 (2005)

    Google Scholar 

  53. H.G. Abdelhady, S. Allen, S.J. Ebbens, C. Madden, N. Patel, C.J. Roberts, Z. Jianxin, Towards nanoscale metrology for biomolecular imaging by atomic force microscopy. Nanotechnology 16(6), 966–973 (2005)

    Google Scholar 

  54. M. Moloney, L. McDonnell, H. O’Shea, Immobilisation of semliki forest virus for atomic force microscopy. Ultramicroscopy 91(1–4), 275–279 (2002)

    Google Scholar 

  55. A. Briggs, O.V. Kolosov, Acoustic microscopy. 2nd edn. in Monographs on the Physics and Chemistry of Materials xxii, (Oxford University Press, New York, 2010), p. 356

    Google Scholar 

  56. T.M. Nelson, R.W. Smith, Scanning acoustic microscopy. Adv. Mater. Process. 162(12), 29–32 (2004)

    Google Scholar 

  57. S. Weiss, Fluorescence spectroscopy of single biomolecules. Science 283(5408), 1676–1683 (1999)

    Google Scholar 

  58. A. Ishijima, T. Yanagida, Single molecule nanobioscience. Trends Biochem. Sci. 26(7), 438–444 (2001)

    Google Scholar 

  59. C.F. Quate, A. Atalar, H.K. Wickramasinghe, Acoustic microscopy with mechanical scanning—review. Proc. IEEE 67(8), 1092–1114 (1979)

    Google Scholar 

  60. C.F. Quate, The AFM as a tool for surface imaging. Surf. Sci. 300(1–3), 980–995 (1994)

    Google Scholar 

  61. K. Haldar, M.A.J. Ferguson, G.A.M. Cross, Acylation of a plasmodium-falciparum merozoite surface-antigen Via Sn-1,2-diacyl glycerol. J. Biol. Chem. 260(8), 4969–4974 (1985)

    Google Scholar 

  62. A. Nel, T. Xia, L. Mädler, N. Li, Toxic potential of materials at the nanolevel. Science 311(5761), 622–627 (2006)

    Google Scholar 

  63. B.J. Panessa-Warren, J.B. Warren, S.S. Wong, J.A. Misewich, Biological cellular response to carbon nanoparticle toxicity. J. Phys. Condens. Matter 18(33), S2185–S2201 (2006)

    Google Scholar 

  64. V. Stone, K. Donaldson, Nanotoxicology—Signs of stress. Nat. Nanotechnol. 1(1), 23–24 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gajendra S. Shekhawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Avasthy, S., Shekhawat, G.S., Dravid, V.P. (2013). Scanning Near-Field Ultrasound Holography. In: Marinello, F., Passeri, D., Savio, E. (eds) Acoustic Scanning Probe Microscopy. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27494-7_10

Download citation

Publish with us

Policies and ethics