Advertisement

HECTOR, a New Hexapod Robot Platform with Increased Mobility - Control Approach, Design and Communication

  • Axel Schneider
  • Jan Paskarbeit
  • Mattias Schaeffersmann
  • Josef Schmitz

Abstract

At the University of Bielefeld a new bio-inspired, hexapod robot system called HECTOR has been developed and is currently set up. To benefit from bioinspired control approaches it is fundamental to identify the most important body aspects in biological examples and to transfer body features and control approaches as pairs to the technical system. According to this, the main functional characteristics of HECTOR as presented in this paper are the elasticity in the self-contained leg joint-drives with integrated sensory processing capabilities, actuated body joints and in addition a lean bus system for onboard communication.

Keywords

Carbon Fiber Reinforce Plastic Stick Insect BLDC Motor Swing Movement Serial Elastic Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartling, C., Schmitz, J.: Reactions to disturbances of a walking leg during stance. J. Exp. Biol. 203, 1211–1223 (2000)Google Scholar
  2. 2.
    Bartsch, S., Planthaber, S.: Scarabaeus: A Walking Robot Applicable to Sample Return Missions. In: Gottscheber, A., Enderle, S., Obdrzalek, D. (eds.) EUROBOT 2008. Communications in Computer and Information Science, vol. 33, pp. 128–133. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Beer, R.D., Chiel, H.J., Quinn, R.D., Espenschied, K.S., Larsson, P.: A distributed neural network architecture for hexapod robot locomotion. Neural Computation 4, 356–365 (1992)CrossRefGoogle Scholar
  4. 4.
    Bläsing, B., Cruse, H.: Mechanisms of stick insect locomotion in a gap crossing paradigm. Journal of Comparative Physiology 190(3), 173–183 (2004)CrossRefGoogle Scholar
  5. 5.
    Brooks, R.A.: A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation RA-2, 14–23 (1986)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Brooks, R.A.: A robot that walks; emergent behaviors from a carefully evolved network. A.i. memo 1091. Institute of Technology, Massachusetts (1989)Google Scholar
  7. 7.
    Brooks, R.A., Connell, J.H.: Asynchronous distributed control system for a mobile robot. In: Proceedings of SPIE, Cambridge, MA, pp. 77–84 (1986)Google Scholar
  8. 8.
    Cruse, H.: The control of body position in the stick insect Carausius morosus, when walking over uneven surfaces. Biological Cybernetics 24, 25–33 (1976)CrossRefGoogle Scholar
  9. 9.
    Cruse, H.: The function of the legs in the free walking stick insect. Carausius morosus. J. Comp. Physiol. A 112, 235–262 (1976)CrossRefGoogle Scholar
  10. 10.
    Cruse, H.: What mechanisms coordinate leg movement in walking arthropods. Trends in Neurosciences 13(1), 15–21 (1990)CrossRefGoogle Scholar
  11. 11.
    Cruse, H., Brunn, D., Bartling, C., Dean, J., Dreifert, M., Schmitz, J.: Walking - a complex behavior controlled by simple networks. Adaptive Behavior 3(4), 385–418 (1995)CrossRefGoogle Scholar
  12. 12.
    Cruse, H., Kindermann, T., Schumm, M., Dean, J., Schmitz, J.: Walknet - a biologically inspired network to control six-legged walking. Neural Networks 11(7-8), 1435–1447 (1998)CrossRefGoogle Scholar
  13. 13.
    Cruse, H., Schilling, M.: From egocentric systems to systems allowing for theory of mind and mutualism. In: Doursat, R. (ed.) Proceedings of the ECAL 2011. MIT Press, Paris (in Press 2011) Google Scholar
  14. 14.
    Dean, J.: A model of leg coordination in the stick insect, Carausius morosus II. description of the kinematic model and simulation of normal step patterns. Biological Cybernetics 64, 403–411 (1991)CrossRefGoogle Scholar
  15. 15.
    Dürr, V., Schmitz, J., Cruse, H.: Behaviour-based modelling of hexapod locomotion: Linking biology and technical application. Arthropod. Struct. Devel. 33(3), 237–250 (2004)CrossRefGoogle Scholar
  16. 16.
    Lewinger, W., Harley, C., Ritzmann, R., Branicky, M., Quinn, R.: Insect-like antennal sensing for climbing and tunneling behavior in a biologically-inspired mobile robot. In: Proceedings of IEEE/ICRA, pp. 4176–4181 (2005)Google Scholar
  17. 17.
    Pearson, K.G.: The control of walking. Scientific American 235, 72–86 (1976)CrossRefGoogle Scholar
  18. 18.
    Pearson, K.G., Fourtner, C.R., Wong, R.K.: Nervous control of walking in the cockroach. In: Stein, R.B., Pearson, K.G., Smith, R.S., Bedford, J.B. (eds.) Control of Posture and Locomotion, pp. 495–514. Plenum Press, New York (1973)Google Scholar
  19. 19.
    Pfeiffer, F.: The TUM walking machines. Phil. Trans. R. Soc. A 365, 109–131 (2007)CrossRefGoogle Scholar
  20. 20.
    Schmitz, J., Schneider, A., Schilling, M., Cruse, H.: No need for a body model: Positive velocity feedback for the control of an 18-DOF robot walker. Applied Bionics and Biomechanics 5(3), 135–147 (2008)CrossRefGoogle Scholar
  21. 21.
    Schneider, A., Cruse, H., Schmitz, J.: Decentralized control of elastic limbs in closed kinematic chains. The International Journal of Robotics Research 25(9), 913–930 (2006)CrossRefGoogle Scholar
  22. 22.
    Schneider, A., Cruse, H., Schmitz, J.: Winching up heavy loads with a compliant arm: A new local joint controller. Biological Cybernetics 98(5), 413–426 (2008)zbMATHCrossRefGoogle Scholar
  23. 23.
    Spenneberg, D., Kirchner, F.: The Bio-Inspired SCORPION Robot: Design, Control & Lessons Learned. In: Climbing & Walking Robots, Towards New Applications, pp. 197–218. I-Tech Education and Publishing, Wien (2007)Google Scholar
  24. 24.
    Wendler, G.: Laufen und Stehen der Stabheuschrecke: Sinnesborsten in den Beingelenken als Glieder von Regelkreisen. Zeitschrift für vergleichende Physiologie 48, 198–250 (1964)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Axel Schneider
    • 1
  • Jan Paskarbeit
    • 1
  • Mattias Schaeffersmann
    • 1
  • Josef Schmitz
    • 2
  1. 1.Mechatronics of Biomimetic ActuatorsUniversity of BielefeldBielefeldGermany
  2. 2.Biological CyberneticsUniversity of BielefeldBielefeldGermany

Personalised recommendations