Advertisement

Multi-Robot System Validation: From Simulation to Prototyping with Mini Robots in the Teleworkbench

  • Andry Tanoto
  • Felix Werner
  • Ulrich Rückert

Abstract

One challenging aspect in the development of multi-robot systems is their validation in a real environment. However, experiments with real robots are considerably tedious as experimenting is repetitive and consists of several steps: setup, execution, data logging, monitoring, and analysis. Moreover, experiments also require many resources especially in the case when involving many robots. This paper describes the role of the Teleworkbench as a platform for conducting experiments involving mini robots. The Teleworkbench offers functionality that can help users in validating their robot software from simulation to prototyping using mini robots. A traffic management system is used as a scenario for demonstrating the support of the Teleworkbench for validating multi-robot systems.

Keywords

Application Programming Interface Interactive Robot Real Robot Mechatronic System Robot Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrose, R.: Interactive robot joint design, analysis and prototyping. In: Proceedings of 1995 IEEE International Conference on Robotics and Automation, vol. 2, pp. 2119–2124 (May 1995)Google Scholar
  2. 2.
    Arkin, R.C.: Motor schema-based mobile robot navigation. The International Journal of Robotics Research 8(4), 92–112 (1989)CrossRefGoogle Scholar
  3. 3.
    Bartneck, C., Hu, J.: Rapid prototyping for interactive robots. In: Information Assurance and Security (2004)Google Scholar
  4. 4.
    Birk, A.: Fast robot prototyping with the cubesystem. In: IEEE International Conference on Robotics and Automation 2004 Proceedings. ICRA 2004, April-1, May, vol. 5, pp. 5177–5182 (2004)Google Scholar
  5. 5.
    Boehm, B.: A spiral model of software development and enhancement. SIGSOFT Softw. Eng. Notes 11, 14–24 (1986)CrossRefGoogle Scholar
  6. 6.
    Collett, T.H., MacDonald, B.A., Gerkey, B.P.: Player 2.0: Toward a practical robot programming framework. In: Proc. of the Australasian Conf. on Robotics and Automation, ACRA (2005)Google Scholar
  7. 7.
    Dudenhoeffer, D.D., Bruemmer, D.J., Davis, M.L.: Modeling and simulation for exploring human-robot team interaction requirements. In: Proceedings of the 33nd Conference on Winter Simulation, WSC 2001, pp. 730–739. IEEE Computer Society, Washington, DC, USA (2001)CrossRefGoogle Scholar
  8. 8.
    Gerkey, B.P., Vaughan, R.T., Howard, A.: The Player/Stage Project: Tools for Multi-Robot and Distributed Sensor Systems. In: Proc. of the ICAR 2003, pp. 317–323 (2003)Google Scholar
  9. 9.
    Glesner, M., Kirschbaum, A., Renner, F.-M., Voss, B.: State-of-the-art in rapid prototyping for mechatronic systems. Mechatronics 12(8), 987–998 (2002)CrossRefGoogle Scholar
  10. 10.
    Herbrechtsmeier, S., Witkowski, U., Rückert, U.: BeBot: A modular mobile miniature robot platform supporting hardware reconfiguration and multi-standard communication. In: Kim, J.-H., Ge, S.S., Vadakkepat, P., Jesse, N., Al Manum, A., Puthusserypady, S., Rückert, U., Sitte, J., Witkowski, U., Nakatsu, R., Braunl, T., Baltes, J., Anderson, J., Wong, C.-C., Verner, I., Ahlgren, D. (eds.) Progress in Robotics. CCIS, vol. 44, pp. 346–356. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    K-Team Corp. Khepera III (October 2010)Google Scholar
  12. 12.
    Karlsson, D., Eles, P., Peng, Z.: Model validation for embedded systems using formal method-aided simulation. Computers Digital Techniques, IET 2(6), 413–433 (2008)CrossRefGoogle Scholar
  13. 13.
    Kenn, H., Carpin, S., Pfingsthorn, M., Hepes, B., Ciocov, C., Birk, A.: FAST-Robots: a rapid-prototyping framework for intelligent mobile robotics. In: Artificial Intelligence and Applications Conference (2003)Google Scholar
  14. 14.
    Kim, W.-S.: Advanced kinematic cardboard prototyping for robot development. In: IASDR 2009 International Association of Societies of Design Research, pp. 3075–3084. Seoul National University of Technology, Department of Industrial Design (2009)Google Scholar
  15. 15.
    Pressman, R.S.: Software engineering: a practitioner’s approach, 2nd edn. McGraw-Hill, Inc., New York (1986)Google Scholar
  16. 16.
    Shen, Q., Gausemeier, J., Bauch, J., Radkowski, R.: A cooperative virtual prototyping system for mechatronic solution elements based assembly. Adv. Eng. Inform. 19, 169–177 (2005)CrossRefGoogle Scholar
  17. 17.
    Smuda, B.: Software wrappers for rapid prototyping jaus-based systems. In: SPIE, vol. 5804, pp. 718–726 (2005)Google Scholar
  18. 18.
    Tanoto, A., Rückert, U., Witkowski, U.: Teleworkbench: A teleoperated platform for experiments in multi-robotics. In: Web-Based Control and Robotics Education, vol. 38, ch. 12, pp. 287–316. Springer (2009)Google Scholar
  19. 19.
    Tanoto, A., Witkowski, U., Rückert, U.: Teleworkbench: A Teleoperated Platform for Multi-Robot Experiments. In: Murase, K., Sekiyama, K., Kubota, N., Naniwa, T., Sitte, J. (eds.) Proc. of the 3rd International Symposium on Autonomous Minirobots for Research and Edutainment (AMiRE 2005), pp. 49–54 (September 2005)Google Scholar
  20. 20.
    Werner, F., Rückert, U., Tanoto, A., Welzel, J.: The Teleworkbench - a platform for performing and comparing experiments in robot navigation. In: Proc. of the Workshop on The Role of Experiments in Robotics Research, ICRA 2010 (May 2010)Google Scholar
  21. 21.
    Zalzal, V., Gava, R., Kelouwani, S., Cohen, P.: Acropolis: A fast protoyping robotic application. International Journal of Advanced Robotic Systems 6(1), 1–6 (2009) ISSN: 1729-8806Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Heinz Nixdorf InstituteUniversity of PaderbornPaderbornGermany
  2. 2.Cognitronics and Sensor Systems GroupCognitive Interaction Technology Centre of Excellence (CITEC) Bielefeld UniversityBielefeldGermany

Personalised recommendations