Skip to main content

Adaptive Simulated Annealing

  • Chapter

Part of the Intelligent Systems Reference Library book series (ISRL,volume 35)

Abstract

Adaptive Simulated Annealing (ASA) is a C-language code that finds the best global fit of a nonlinear cost-function over a D-dimensional space. ASA has over 100 OPTIONS to provide robust tuning over many classes of nonlinear stochastic systems. These many OPTIONS help ensure that ASA can be used robustly across many classes of systems.

Keywords

  • Cost Function
  • Nonlinear Stochastic System
  • Annealing Schedule
  • Temperature Schedule
  • Quench Parameter

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-27479-4_4
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-27479-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atiya, A., Parlos, A., Ingber, L.: A reinforcement learning method based on adaptive simulated annealing. In: Proceedings International Midwest Symposium on Circuits and Systems (MWCAS). IEEE CAS, Egypt (2003), http://www.ingber.com/asa03_reinforce.pdf

    Google Scholar 

  2. Binder, K., Stauffer, D.: A simple introduction to monte carlo simulations and some specialized topics. In: Binder, K. (ed.) Applications of the Monte Carlo Method in Statistical Physics, pp. 1–36. Springer, Berlin (1985)

    Google Scholar 

  3. Bowman, M., Ingber, L.: Canonical momenta of nonlinear combat. In: Proceedings of the 1997 Simulation Multi-Conference, Atlanta, GA, April 6-10, Society for Computer Simulation, San Diego, CA (1997), http://www.ingber.com/combat97_cmi.pdf

    Google Scholar 

  4. Cerny, V.: A thermodynamical approach to the travelling salesman problem: An efficient simulation algorithm. Tech. Rep. Report, Comenius University, Bratislava, Czechoslovakia (1982)

    Google Scholar 

  5. Charnes, A., Wolfe, M.: Extended pincus theorems and convergence of simulated annealing. International Journal Systems Science 20(8), 1521–1533 (1989)

    MATH  MathSciNet  CrossRef  Google Scholar 

  6. Collins, N., Egelese, R., Golden, B.: Simulated annealing — an annotated bibliography. American Journal Mathematical Management Science 8(3,4), 209–307 (1988)

    MATH  CrossRef  Google Scholar 

  7. Gelfand, S.: Analysis of simulated annealing type algorithms. Tech. Rep. Ph.D. Thesis, MIT, Cambridge, MA (1987)

    Google Scholar 

  8. Geman, S., Geman, D.: Stochastic relaxation, gibbs distribution and the bayesian restoration in images. IEEE Transactions Pattern Analysis Machine Intelligence 6(6), 721–741 (1984)

    MATH  CrossRef  Google Scholar 

  9. Ingber, L.: Very fast simulated re-annealing. Mathematical Computer Modelling 12(8), 967–973 (1989), http://www.ingber.com/asa89_vfsr.pdf

    MATH  MathSciNet  CrossRef  Google Scholar 

  10. Ingber, L.: Statistical mechanical aids to calculating term structure models. Physical Review A 42(12), 7057–7064 (1990), http://www.ingber.com/markets90_interest.pdf

    MathSciNet  CrossRef  Google Scholar 

  11. Ingber, L.: Statistical mechanics of neocortical interactions: A scaling paradigm applied to electroencephalography. Physical Review A 44(6), 4017–4060 (1991), http://www.ingber.com/smni91_eeg.pdf

    MathSciNet  CrossRef  Google Scholar 

  12. Ingber, L.: Generic mesoscopic neural networks based on statistical mechanics of neocortical interactions. Physical Review A 45(4), R2183–R2186 (1992), http://www.ingber.com/smni92_mnn.pdf

    CrossRef  Google Scholar 

  13. Ingber, L.: Adaptive simulated annealing (ASA). Tech. Rep. Global optimization C-code, Caltech Alumni Association, Pasadena, CA (1993a), http://www.ingber.com/#ASA-CODE

  14. Ingber, L.: Simulated annealing: Practice versus theory. Mathematical Computer Modelling 18(11), 29–57 (1993b), http://www.ingber.com/asa93_sapvt.pdf

    MATH  MathSciNet  CrossRef  Google Scholar 

  15. Ingber, L.: Statistical mechanics of combat and extensions. In: Jones, C. (ed.) Toward a Science of Command, Control, and Communications, pp. 117–149. American Institute of Aeronautics and Astronautics, Washington, DC (1993c); ISBN 1-56347-068-3, http://www.ingber.com/combat93_c3sci.pdf

    Google Scholar 

  16. Ingber, L.: Adaptive simulated annealing (ASA): Lessons learned. Control and Cybernetics 25(1), 33–54 (1996a), Invited paper to Control and Cybernetics on Simulated Annealing Applied to Combinatorial Optimization, http://www.ingber.com/asa96_lessons.pdf

    MATH  Google Scholar 

  17. Ingber, L.: Statistical mechanics of nonlinear nonequilibrium financial markets: Applications to optimized trading. Mathematical Computer Modelling 23(7), 101–121 (1996b), http://www.ingber.com/markets96_trading.pdf

    MATH  MathSciNet  CrossRef  Google Scholar 

  18. Ingber, L.: Canonical momenta indicators of financial markets and neocortical EEG. In: Amari, S.I., Xu, L., King, I., Leung, K.S. (eds.) Progress in Neural Information Processing, pp. 777–784. Springer, New York (1996c); Invited paper to the 1996 International Conference on Neural Information Processing (ICONIP 1996), Hong Kong, September 24-27 (1996); ISBN 981 3083-05-0, http://www.ingber.com/markets96_momenta.pdf

    Google Scholar 

  19. Ingber, L.: Statistical mechanics of neocortical interactions: Applications of canonical momenta indicators to electroencephalography. Physical Review E 55(4), 4578–4593 (1997), http://www.ingber.com/smni97_cmi.pdf

    CrossRef  Google Scholar 

  20. Ingber, L.: Data mining and knowledge discovery via statistical mechanics in nonlinear stochastic systems. Mathematical Computer Modelling 27(3), 9–31 (1998a), http://www.ingber.com/path98_datamining.pdf

    MATH  MathSciNet  CrossRef  Google Scholar 

  21. Ingber, L.: Statistical mechanics of neocortical interactions: Training and testing canonical momenta indicators of EEG. Mathematical Computer Modelling 27(3), 33–64 (1998b), http://www.ingber.com/smni98_cmi_test.pdf

    MATH  MathSciNet  CrossRef  Google Scholar 

  22. Ingber, L.: Adaptive simulated annealing (ASA) and path-integral (PATHINT) algorithms: Generic tools for complex systems. Tech. Rep. ASA-PATHINT Lecture Plates, Lester Ingber Research, Chicago, IL (2001a); Invited talk U Calgary, Canada (April 2001), http://www.ingber.com/asa01_lecture.pdfandasa01_lecture.html

  23. Ingber, L.: Statistical mechanics of combat (SMC): Mathematical comparison of computer models to exercise data. Tech. Rep. SMC Lecture Plates, Lester Ingber Research, Chicago, IL (2001b), http://www.ingber.com/combat01_lecture.pdfandcombat01_lecture.html

  24. Ingber, L.: Statistical mechanics of financial markets (SMFM): Applications to trading indicators and options. In: Tech. Rep. SMFM Lecture Plates, Lester Ingber Research, Chicago, IL (2001c); Invited talk U Calgary, Canada (April 2001); Invited talk U Florida, Gainesville (April 2002); Invited talk Tulane U, New Orleans (January 2003), http://www.ingber.com/markets01_lecture.pdf , http://www.ingber.com/markets01_lecture.html

  25. Ingber, L.: Statistical mechanics of neocortical interactions (SMNI): Multiple scales of short-term memory and EEG phenomena. Tech. Rep. SMNI Lecture Plates, Lester Ingber Research, Chicago, IL (2001d); Invited talk U Calgary, Canada (April 2001), http://www.ingber.com/smni01_lecture.pdfandsmni01_lecture.html

  26. Ingber, L.: Trading in risk dimensions (TRD). Tech. Rep. Report 2005: TRD, Lester Ingber Research, Ashland, OR (2005), http://www.ingber.com/markets05_trd.pdf

  27. Ingber, L.: Ideas by statistical mechanics (ISM). Tech. Rep. Report 2006: ISM, Lester Ingber Research, Ashland, OR (2006), http://www.ingber.com/smni06_ism.pdf

  28. Ingber, L.: Ideas by statistical mechanics (ISM). Journal Integrated Systems Design and Process Science 11(3), 31–54 (2007a); Special Issue: Biologically Inspired Computing

    Google Scholar 

  29. Ingber, L.: Real options for project schedules (ROPS). Tech. Rep. Report 2007:ROPS, Lester Ingber Research, Ashland, OR (2007b), http://www.ingber.com/markets07_rops.pdf

  30. Ingber, L.: AI and ideas by statistical mechanics (ISM). In: Rabuñal, J., Dorado, J., Pazos, A. (eds.) Encyclopedia of Artificial Intelligence, pp. 58–64. Information Science Reference, New York (2008a); ISBN 978-1-59904-849-9

    CrossRef  Google Scholar 

  31. Ingber, L.: Statistical mechanics of neocortical interactions (SMNI): Testing theories with multiple imaging data. NeuroQuantology Journal 6(2), 97–104 (2008b), http://www.ingber.com/smni08_tt.pdf

  32. Ingber, L.: Statistical mechanics of neocortical interactions: Nonlinear columnar electroencephalography. NeuroQuantology Journal 7(4), 500–529 (2009), http://www.ingber.com/smni09_nonlin_column_eeg.pdf

    Google Scholar 

  33. Ingber, L.: Real options for project schedules (ROPS). International Journal of Science, Technology & Management 2(2), 15–20 (2010a); Invited paper

    Google Scholar 

  34. Ingber, L.: Trading in risk dimensions. In: Gregoriou, G. (ed.) The Handbook of Trading: Strategies for Navigating and Profiting from Currency, Bond, and Stock Markets, pp. 287–300. McGraw-Hill, New York (2010b)

    Google Scholar 

  35. Ingber, L., Fujio, H., Wehner, M.: Mathematical comparison of combat computer models to exercise data. Mathematical Computer Modelling 15(1), 65–90 (1991), http://www.ingber.com/combat91_data.pdf

    CrossRef  Google Scholar 

  36. Ingber, L., Mondescu, R.: Optimization of trading physics models of markets. IEEE Trans. Neural Networks 12(4), 776–790 (2001); Invited paper for special issue on Neural Networks in Financial Engineering, http://www.ingber.com/markets01_optim_trading.pdf

    CrossRef  Google Scholar 

  37. Ingber, L., Mondescu, R.: Automated internet trading based on optimized physics models of markets. In: Howlett, R., Ichalkaranje, N., Jain, L., Tonfoni, G. (eds.) Intelligent Internet-Based Information Processing Systems, pp. 305–356. World Scientific, Singapore (2003), http://www.ingber.com/markets03_automated.pdf

    CrossRef  Google Scholar 

  38. Ingber, L., Sworder, D.: Statistical mechanics of combat with human factors. Mathematical Computer Modelling 15(11), 99–127 (1991), http://www.ingber.com/combat91_human.pdf

    MATH  CrossRef  Google Scholar 

  39. Johnson, D., Aragon, C., McGeoch, L., Schevon, C.: Optimization by simulated annealing: An experimental evaluation (parts 1 and 2). Tech. Rep. Report, AT&T Bell Laboratories, Murray Hill, NJ (1987)

    Google Scholar 

  40. Kirkpatrick, S., Gelatt Jr., C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    MATH  MathSciNet  CrossRef  Google Scholar 

  41. Ma, S.K.: Statistical Mechanics. World Scientific, Singapore (1985)

    MATH  CrossRef  Google Scholar 

  42. Mathews, J., Walker, R.: Mathematical Methods of Physics, 2nd ed. Benjamin, New York (1970)

    Google Scholar 

  43. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. Journal of Chemical Physics 21(6), 1087–1092 (1953)

    CrossRef  Google Scholar 

  44. Oliveira Jr., H.: Fuzzy control of stochastic global optimization algorithms and very fast simulated reannealing. Tech. Rep. Report, hime@engineer.com, Rio de Janeiro, Brazil (2001), http://www.optimization-online.org/DB_FILE/2003/11/779.pdf

  45. Oliveira Jr., H., Petraglia, A., Petraglia, M.: Frequency domain fir filter design using fuzzy adaptive simulated annealing. Circuits, Systems, and Signal Processiing 28(6), 899–911(2009); DOI: 10.1007/s00034-009-9128-1

    Google Scholar 

  46. Oliveira Jr.,H., Petraglia, H., Petraglia, A.: Frequency domain fir filter design using fuzzy adaptive simulated annealing. In: 7th International Symposium on Signal Processing and Information Technology, Proceedings of ISSPIT, Cairo, vol. 1, pp. 899–903 (2007)

    Google Scholar 

  47. Pincus, M.: A monte carlo method for the approximate solution of certain types of constrained optimization problems. Operations Research 18, 1225–1228 (1970)

    MATH  MathSciNet  CrossRef  Google Scholar 

  48. Szu, H., Hartley, R.: Fast simulated annealing. Physics Letters A 122(3-4), 157–162 (1987)

    CrossRef  Google Scholar 

  49. van Laarhoven Jr., P., Aarts, E.: Simulated Annealing: Theory and Applications. D. Reidel, Dordrecht (1987)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Aguiar e Oliveira Junior, H., Ingber, L., Petraglia, A., Rembold Petraglia, M., Augusta Soares Machado, M. (2012). Adaptive Simulated Annealing. In: Stochastic Global Optimization and Its Applications with Fuzzy Adaptive Simulated Annealing. Intelligent Systems Reference Library, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27479-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27479-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27478-7

  • Online ISBN: 978-3-642-27479-4

  • eBook Packages: EngineeringEngineering (R0)