Metaheuristic Methods

  • Hime Aguiar e Oliveira Junior
  • Lester Ingber
  • Antonio Petraglia
  • Mariane Rembold Petraglia
  • Maria Augusta Soares Machado
Part of the Intelligent Systems Reference Library book series (ISRL, volume 35)


In this chapter we start to focus our attention only on heuristic methods, describing several important, well-established methods and trying to point out how and why they are useful whenever we face certain difficult optimization problems. Although (meta)heuristic algorithms are numerous, we opted for presenting here just a few of them, that, we believe, can give the reader a good view of the whole class. The emphasis will be on their qualitative aspects.


Genetic Algorithm Particle Swarm Optimization Simulated Annealing Differential Evolution Metaheuristic Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahrari, A., Atai, A.A.: Grenade Explosion Method - A novel tool for optimization of multimodal functions. Applied Soft Computing 10, 1132–1140 (2010)CrossRefGoogle Scholar
  2. 2.
    Birbil, S.I., Fang, S.: An Electromagnetism-like Mechanism for Global Optimization. Journal of Global Optimization 25, 263–282 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Clerc, M.: Particle Swarm Optimization. ISTE Publishing Company, London (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Corana, A., Marchesi, M., Martini, C., Ridella, S.: Minimizing multimodal functions of continuous variables with the simulated annealing algorithm. ACM Trans. Mathematical Software 13, 262–280 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, New York (2001)zbMATHGoogle Scholar
  6. 6.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Books (2004)Google Scholar
  7. 7.
    Dréo, J., Pétrowski, A., Siarry, P., Taillard, E.: Metaheuristics for Hard Optimization Methods and Case Studies - Simulated Annealing, Tabu Search, Evolutionary and Genetic Algorithms, Ant Colonies. Springer, Berlin (2006)Google Scholar
  8. 8.
    Glover, F., Kochenberger, G.A.: Handbook of metaheuristics. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  9. 9.
    Hartmann, A.K., Riger, H.: Optimization Algorithms in Physics. Wiley, Berlin (2002)zbMATHGoogle Scholar
  10. 10.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  11. 11.
    Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization 39, 459–471 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing 8, 687–697 (2008)CrossRefGoogle Scholar
  13. 13.
    Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    van Laarhoven, P.J.M., Aarts, E.H.L.: Simulated Annealing: Theory and Applications. D. Reidel, Dordrecht (1987)CrossRefzbMATHGoogle Scholar
  15. 15.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1994)CrossRefzbMATHGoogle Scholar
  16. 16.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  17. 17.
    Parsopoulos, K.E., Vrahatis, M.N.: Recent approaches to global optimization problems through Particle Swarm Optimization. Natural Computing 1, 235–306 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Rubinstein, R.Y., Kroese, D.P.: The cross-entropy method: A unified approach to combinatorial optimization, Monte-Carlo simulation, and machine learning. Springer, New York (2004)CrossRefGoogle Scholar
  19. 19.
    Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Weise, T.: Global Optimization Algorithms - Theory and Application, (accessed July 11, 2011)

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Hime Aguiar e Oliveira Junior
    • 1
  • Lester Ingber
    • 2
  • Antonio Petraglia
    • 3
  • Mariane Rembold Petraglia
    • 3
  • Maria Augusta Soares Machado
    • 4
  1. 1.Rio de JaneiroBrazil
  2. 2.Lester Ingber Research AshlandUSA
  3. 3.Faculdades IBMEC Rio de JaneiroBrazil
  4. 4.IBMEC-RJ Rio de JaneiroBrazil

Personalised recommendations