Introduction

  • Hime Aguiar e Oliveira Junior
  • Lester Ingber
  • Antonio Petraglia
  • Mariane Rembold Petraglia
  • Maria Augusta Soares Machado
Part of the Intelligent Systems Reference Library book series (ISRL, volume 35)

Abstract

This chapter aims to introduce the readers to the fundamental ideas of global optimization, presenting, in a friendly way, its main techniques. Although we are also going to browse some traditional global optimization techniques, our emphasis along this book will be on evolutionary and nature-inspired algorithms, focusing on the adaptive simulated annealing paradigm and its more representative applications until now. The book aims to show readers how to use global optimization techniques to get their problems solved in practice, using simple and inexpensive tools.

Keywords

Cost Function Global Optimization Blind Source Separation Attraction Basin Representative Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bazaraa, M., Sherali, H., Shetty, C.: Nonlinear Programming, Theory and Applications. John Wiley & Sons, New York (1993)Google Scholar
  2. 2.
    Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York (1982)MATHGoogle Scholar
  3. 3.
    Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1995)MATHGoogle Scholar
  4. 4.
    Brent, R.P.: Algorithms for minimization without derivatives. Prentice Hall, Englewood Cliffs (1973)MATHGoogle Scholar
  5. 5.
    Fletcher, R.: Practical Methods of Optimization. John Wiley & Sons, New York (1987)MATHGoogle Scholar
  6. 6.
    Gill, P., Murray, W., Wright, M.H.: Practical Optimization. Academic Press (1981)Google Scholar
  7. 7.
    Hartmann, A.K., Riger, H.: Optimization Algorithms in Physics. Wiley, Berlin (2002)MATHGoogle Scholar
  8. 8.
    Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. Prentice-Hall, Englewood Cliffs (1974)MATHGoogle Scholar
  9. 9.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1994)CrossRefMATHGoogle Scholar
  10. 10.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Hime Aguiar e Oliveira Junior
    • 1
  • Lester Ingber
    • 2
  • Antonio Petraglia
    • 3
  • Mariane Rembold Petraglia
    • 3
  • Maria Augusta Soares Machado
    • 4
  1. 1.Rio de JaneiroBrazil
  2. 2.Lester Ingber Research AshlandUSA
  3. 3.Faculdades IBMEC Rio de JaneiroBrazil
  4. 4.IBMEC-RJ Rio de JaneiroBrazil

Personalised recommendations