Dialyzer Performance Parameters

Part of the Studies in Computational Intelligence book series (SCI, volume 404)

Abstract

In a given treatment modality, the performance characteristics of the dialyzer determine the quantity and nature of uremic toxins removed from the patient’s blood, provided that an adequate treatment time and flow conditions are prescribed. Dialyzer selection may be the most difficult task facing a dialysis facility. Practitioners must understand the functions of a dialyzer, membrane biocompatibility, implications of poor technique, financial and quality implications of dialyzer reprocessing, and matching the patient to the dialyzer’s capabilities. Dialyzer membranes are a vital contributor to the success or failure of hemodialysis therapies and hemodialysis adequacy. Matching a dialyzer to patient requirements is crucial to meet the prescribed clearance goals.

Keywords

Clearance Ultrafiltration coefficient (KufTransmembrane Pressure (TMP) Dialyzer Flux Backtransport Priming Volume Mass transfer coefficient of (KoA) Sieving Coefficient (S) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akizawa, T., Kinugasa, E., Ideura, T.: Classification of dialysismem-branes by performance. Contrib. Nephrol. 113, 25–31 (1995)Google Scholar
  2. Ambalavanan, S., Rabetoy, G., Cheung, A.: High efficiency and high flux hemodialysis. In: Schrier, R.W. (ed.) Atlas of Diseases of the Kidney. Current Medicine, vol. 5, pp. 3.1–3.10, Philadelphia (1999)Google Scholar
  3. Ayli, M., Ayli, D., Azak, A., et al.: The effect of high-flux hemodialysis on dialysis-associated amyloidosis. Ren. Fail. 27(1), 31–34 (2005)Google Scholar
  4. Bagnasco, S.M.: The erythrocyte urea transporter UT-B. J. Membr. Biol. 212(2), 133–138 (2006)CrossRefGoogle Scholar
  5. Bhimani, J.P., Ouseph, R., Ward, R.A.: Effect of increasing dialysate flow rate on diffusive mass transfer of urea, phosphate and beta2-microglobulin during clinical haemodialysis. Nephrol. Dial. Transplant. 25(12), 3990–3995 (2010)CrossRefGoogle Scholar
  6. Collins, A.J., Keshaviah, P.: High-efficiency, high flux therapies in clinical dialysis. In: Nissenson, A.R. (ed.) Clinical Dialysis, 3rd edn., pp. 848–863 (1995)Google Scholar
  7. Collins, A.J.: High-flux, high-efficiency procedures. In: Henrich, W. (ed.) Principles and Practice of Hemodialysis, pp. 76–88. Appleton & Large, Norwalk (1996)Google Scholar
  8. Choong, L., Leypoldt, J.K., Cheung, A.: Dialyzer mass transfer-area co-efficients during clinical hemodialysis are dependent on both blood flow and dialysate flow rates (abstract). J. Am. Soc. Nephrol. 10, 189A (1999)Google Scholar
  9. Cheung, A.K., Levin, N.W., Greene, T., et al.: Effects of high-flux hemo-dialysis on clinical outcomes: results of the HEMO study. J. Am. Soc. Nephrol. 14(12), 3251–3263 (2003)CrossRefGoogle Scholar
  10. Cheung, A.K., Leypoldt, J.K.: The hemodialysis membranes: a historical perspective, current state and future prospect. Semin. Nephrol. 17(3), 196–213 (1997)Google Scholar
  11. Clark, W.R., Hamburger, R.H., Lysaght, M.J.: Effect of membrane composition and structure on solute removal and biocompatibility in hemodialysis. Kidney Int. 56(6), 2005–2015 (1999)CrossRefGoogle Scholar
  12. Clark, W.R., Shinaberger, J.H.: Effect of Dialysateside Mass Transfer Resistance on Small Solute Removal in Hemodialysis. Blood Purif. 18(4), 260–263 (2000)CrossRefGoogle Scholar
  13. Curtis, J.: Splitting fibers: understanding how dialyzer differences can impact adequacy. Nephrol. News Issues 5(6), 36–39 (2001)Google Scholar
  14. Daniels, I.D., Berlyne, G.M., Barth, R.H.: Blood flow rate and access recirculation in hemodialysis. Int. J. Artif. Organs 15(8), 470–474 (1992)Google Scholar
  15. Daugirdas, J.T., Blake, P.G., Ing, T.S.: Handbook of Dialysis, 4th edn. Lippincott, Williams and Wilkins, Philadelphia (2007)Google Scholar
  16. Daugirdas, J.T., Depner, T.A.: A nomogram approach to hemodialysis urea modeling. Am. J. Kidney Dis. 23(1), 33–40 (1994)Google Scholar
  17. Depner, T.A., Greene, T., Daugirdas, J.T., et al.: Dialyzer performance in the HEMO study: in vivo KoA and true blood flow determined from a model of cross-dialyzer urea extraction. ASAIO J. 50(1), 85–93 (2004)CrossRefGoogle Scholar
  18. Gotch, F.A., Panlilio, F., Sergeyeva, O., et al.: Effective diffusion volume flow rates (Qe) for urea, creatinine, and inorganic phosphorous (Qeu, Qecr, QeiP) during hemodialysis. Semin. Dial. 16(6), 474–476 (2003)CrossRefGoogle Scholar
  19. Granger, A., Vantard, G., Vantelon, J., Perrone, B.: A mathematical ap-proach of simultaneous dialysis and filtration (SDF). In: Proc. Eur. Soc. Artif. Organs, vol. 5, pp. 174–177 (1978)Google Scholar
  20. Hauk, M., Kuhlmann, M.K., Riegel, W., et al.: In vivo effects of dialys-ate flow rate on Kt/V in maintenance hemodialysis patients. Am. J. Kidney Dis. 35(1), 105–111 (2000)CrossRefGoogle Scholar
  21. Hamilton, R.W.: Principles of Dialysis: Diffusion, Convection, and Dialysis Machines. In: Schrier, R.W. (ed.) Atlas of Diseases of the Kidney. Current Medicine, vol. 5, pp. 1.1–1.6. Blackwell Science, Philadelphia (1998)Google Scholar
  22. Henderson, L.W.: Biophysics of Ultrafiltration and Hemofiltration in Replacement of renal function by dialysis. In: Jacobs, C., Kjellstrand, C.M., Koch, K.M., Winchester, J.F. (eds.), pp. 114–145. Kluwer Aca-demic Publisher (1996)Google Scholar
  23. Hoenich, N.A., Ronco, C.: Selecting a Dialyzer: Technical and Clinical Considerations. In: Nissenson, A.R., Fine, R.N. (eds.) Handbook of Dialysis Therapy, 4th edn., pp. 263–278. Hanley &Belfus, Inc., Philadelphia (2008)CrossRefGoogle Scholar
  24. Jaffrin, M.Y.: Convective mass transfer in hemodialysis. Artif. Organs 19(11), 1162–1171 (1995)CrossRefGoogle Scholar
  25. Keshaviah, P., Luehmann, D., Ilstrup, K., Collins, A.: Technical requirements for rapid high efficiency therapies. Artif. Organs 10(3), 189–194 (1986)CrossRefGoogle Scholar
  26. Khandpur, R.S.: Handbook of Biomedical Instrumentation, 2nd edn. McGraw-Hill Professional (2003)Google Scholar
  27. Klinkmann, H., Vienken, J.: Membranes for dialysis. Nephrol. Dial. Transplant. 10(suppl. 3), 39–45 (1995)Google Scholar
  28. Klinkmann, H., Ebbinghausen, H., Uhlenbusch, I., Vienken, J.: High flux dialysis, dialysate quality and backtransport. In: Bonomini, V. (ed.) Evolution in Dialysis Adequacy. Contr. Nephrol., vol. 103, pp. 89–97 (1993)Google Scholar
  29. Korwer, U., Schorn, E.B., Grassmann, A., Vienken, J.: Understanding Membranes and Dialyzers. PABST Science Publishers (2004)Google Scholar
  30. Leypoldt, J.K., Cheung, A.K., Chirananthavat, T., et al.: Hollow fiber shape alters solute clearances in high flux hemodialyzers. ASAIO J. 49(1), 81–87 (2003)CrossRefGoogle Scholar
  31. Leypoldt, J.K.: Solute fluxes in different treatment modalities. Nephrol. Dial. Transplant. 15(suppl. 1), 3–9 (2000)CrossRefGoogle Scholar
  32. Leypoldt, J.K., Cheung, A.: Effect of low dialysate flow rates on hemodialyzer mass transfer area coefficients for urea and creatinine. Home HD Int. 3, 51–54 (1999)Google Scholar
  33. Leypoldt, J.K., Cheung, A.K., Agodoa, L.Y., et al.: Hemodialyzer mass transfer-area coefficients for urea increase at high dialysate flow rates. Kidney Int. 51(6), 2013–2017 (1997)CrossRefGoogle Scholar
  34. Leypoldt, J.K.: Effect of Increasing Dialysate Flow Rate on KoA and Dialyzer Urea Clearance. Semin. Dial. 11(3), 195–196 (1998)CrossRefGoogle Scholar
  35. Lim, V.S., Flanigan, M.J., Fangman, J.: Effect of hematocrit on solute removal during high efficiency hemodialysis. Kidney Int. 37(6), 1557–1559 (1990)CrossRefGoogle Scholar
  36. Locatelli, F., Valderrabano, F., Hoenich, N., et al.: Progress in dialysis technology: membrane selection and patient outcome. Nephrol. Dial. Transplant. 15(8), 1133–1139 (2000)CrossRefGoogle Scholar
  37. Lonnemann, G., Sereni, L., Lemke, H.D., Tetta, C.: Pyrogen retention by highly permeable synthetic membranes during in vitro dialysis. Artif. Organs 25(12), 951–960 (2001)CrossRefGoogle Scholar
  38. MacLeod, A., Daly, C., Khan, I., et al.: Comparison of cellulose, modi-fied cellulose and synthetic membranes in the haemodialysis of patients with end-stage renal disease. Cochrane Database Syst. Rev. 3:CD003234 (2001)Google Scholar
  39. Mandolfo, S., Malberti, F., Imbasciati, E., Cogliati, P., Gauly, A.: Impact of blood and dialysate flow and surface on performance of new polysulfone hemodialysis dialyzers. Int. J. Artif. Organs 26(2), 113–120 (2003)Google Scholar
  40. Michaels, A.S.: Operating parameters and performance criteria for hemodialyzers and other membrane-separation devices. Trans. Am. Soc. Artif. Intern. Organs 12, 387–392 (1966)Google Scholar
  41. Ofsthun, N.J., Zydney, A.L.: Importance of convection in artificial kid-ney treatment. In: Maeda, K., Shinzato, T. (eds.) Effective Hemodiafiltration: New Methods, pp. 54–70. Karger Publisher, Basel (1994)Google Scholar
  42. Ofsthun, N.J., Leypoldt, J.K.: Ultrafiltration and backfiltration during hemodialysis. Artif. Organs 19(11), 1143–1161 (1995)CrossRefGoogle Scholar
  43. Okada, M., Takesawa, S., Watanabe, T., et al.: Effects of zeta potential on the permeability of dialysis membranes to inorganic phosphate. ASAIO Trans. 35(3), 320–322 (1989)CrossRefGoogle Scholar
  44. Ouseph, R., Ward, R.A.: Increasing dialysate flow rate increases dialyzer urea mass transfer-area coefficients during clinical use. Am. J. Kidney Dis. 37(2), 316–320 (2001)CrossRefGoogle Scholar
  45. Palmer, B.F.: The Dialysis Prescription and Urea Modeling. In: Schrier, R.W. (ed.) Atlas of Diseases of the Kidney, Current Medicine, vol. 5, pp. 6.1–6.8. Blackwell Science, Philadelphia (1998)Google Scholar
  46. Ronco, C., Brendolan, A., Crepaldi, C., et al.: Blood and dialysate flow distributions in hollow fiber hemodialyzers analyzed by computerized helical scanning technique. J. Am. Soc. Nephrol. 13, S53–S61 (2002)Google Scholar
  47. Ronco, C., Ghezzi, P.M., Metry, G., et al.: Effects of hematocrit and blood flow distribution on solute clearance in hollow fiber hemodialyzers. Nephron 89(3), 243–250 (2001)CrossRefGoogle Scholar
  48. Ronco, C., Heifetz, A., Fox, K., et al.: Beta 2-microglobulin removal by synthetic dialysis membranes. Mechanisms and kinetics of the molecule. Int. J. Artif. Organs 20, 136–143 (1997)Google Scholar
  49. Ronco, C.: Backfiltration in clinical dialysis: nature of the phenomenon, mechanisms and possible solutions. Int. J. Artif. Organs 13, 11–21 (1990)Google Scholar
  50. Sargent, J.A., Gotch, F.A.: Principles and biophysics of dialysis in Re-placement of renal function by dialysis. In: Jacob, C., Kjellstrand, C.M., Koch, K.M., Winchester, J.F. (eds.), 4th edn., pp. 188–230. Kluwer Academic Publiher, Dordrecht (1996)Google Scholar
  51. Waniewski, J., Werynski, A., Ahrenholz, P., et al.: Theoretical basis and experimental verification of the impact of ultrafiltration on dialyzer clearance. Artif. Organs 15(2), 70–77 (1991)CrossRefGoogle Scholar
  52. Werynski, A.: Evaluation of the impact of ultrafiltration on dialyzer clearance. Artif. Organs 3(2), 140–142 (1979)CrossRefGoogle Scholar
  53. Woods, H.F., Nandakumar, M.: Improved outcome for haemodialysis patients treated with high-flux membranes. Nephrol. Dial. Transplant. 15, 36–42 (2000)CrossRefGoogle Scholar
  54. Yamamoto, K., Matsukawa, H., Yakushiji, T., et al.: Technical evaluation of dialysate flow in a newly designed dialyzer. ASAIO J. 53(1), 36–40, 14 (2007)CrossRefGoogle Scholar
  55. Yamamoto, K., Matsuda, M., Hirano, A., et al.: Computational evaluation of dialysis fluid flow in dialyzers with variously designed jackets. Artif. Organs 33(6), 481–486 (2009)CrossRefGoogle Scholar
  56. Zucchelli, P., Santoro, A.: Inorganic phosphate removal during different dialytic procedures. Int. J. Artif. Organs 10(3), 173–178 (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Computer and Software Engineering Department Faculty of EngineeringMisr University for Science & Technology (MUST)6th of October CityEgypt

Personalised recommendations