Advertisement

Access Flow Monitoring Methods

  • Daniel Schneditz
  • Laura M. Rosales
  • Ahmad Taher Azar
Part of the Studies in Computational Intelligence book series (SCI, volume 404)

Abstract

Low access blood flow has been recognized as the most important cause for access thrombosis and subsequent access failure so that some form of access flow surveillance is recommended in everyday practice. The classic technique to measure flow in physiology is based on indicator dilution as most flow rates are inaccessible to direct measurement. However, extracorporeal blood purification techniques have been designed for the controlled removal and/or delivery of solutes, all of which can be used as indicators to measure selected transport characteristics throughout the intra- and extracorporeal system. It is therefore not surprising that extracorporeal techniques are extremely well suited for access flow monitoring methods based on indicator dilution, also because these techniques can be integrated into the extracorporeal system as part of the purification process and as these procedures have the potential to be fully automated. In this chapter the physiological basis of indicator dilution is briefly summarized with regard to application in hemodialysis considering the limitations as well as the possibilities for integration and automation.

Keywords

Cardiac output Systemic blood flow Access blood flow Access resistance Access stenosis Blood pressure Resistance Recirculation Access recirculation Forced recirculation Cardiopulmonary recirculation Indicator dilution Constant infusion techniques Bolus techniques Area under the curve Double recirculation techniques Gradient techniques Thermodilution Saline dilution On-line clearance Extracorporeal gradients Line switches 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azar, A.T.: Biofeedback systems and adaptive control hemodialysis treatment. Saudi J. Kidney Dis. Transpl. 19(6), 895–903 (2008)Google Scholar
  2. 2.
    Azar, A.T.: Effect of dialysate temperature on hemodynamic stability among hemodialysis patients. Saudi J. Kidney Dis. Transpl. 20(4), 596–603 (2009)MathSciNetGoogle Scholar
  3. 3.
    Basile, C., Lomonte, C., Vernaglione, L., et al.: The relationship between the flow of arteriovenous fistula and cardiac output in haemodialysis patients. Nephrol. Dial. Transplant. 23(1), 282–287 (2008)CrossRefGoogle Scholar
  4. 4.
    Bassingthwaighte, J.B., Ackerman, F.H., Wood, E.H.: Applications of the lagged normal density curve as a model for arterial dilution curves. Circ. Res. 18(4), 398–415 (1966)CrossRefGoogle Scholar
  5. 5.
    Berra, Y.: Yogi Berra Sayings (2011), http://www.retrogalaxy.com/sports/yogi-berra.asp
  6. 6.
    Besarab, A., Lubkowski, T., Frinak, S., et al.: Detection of access strictures and outlet stenoses in vascular accesses Which test is best? ASAIO J. 43(5), M548–M552 (1997)Google Scholar
  7. 7.
    Bos, W.J., Zietse, R., Wesseling, K.H., Westerhof, N.: Effects of arteriovenous fistulas on cardiac oxygen supply and demand. Kidney Int. 55(5), 2049–2053 (1999)CrossRefGoogle Scholar
  8. 8.
    Bünger, C.M., Kröger, J., Kock, L., et al.: Axillary-axillary interarterial chest loop conduit as an alternative for chronic hemodialysis access. J. Vasc. Surg. 42(2), 290–295 (2005)CrossRefGoogle Scholar
  9. 9.
    Cherrick, G.R., Stein, S.W., Leevy, C.M., Davidson, C.S.: Indocyanine green: observations on its physical properties, plasma decay, and hepatic extraction. J. Clin. Invest. 39, 592–600 (1960)CrossRefGoogle Scholar
  10. 10.
    Chiang, J.C., Teh, L.S., Wu, H.S.: Preliminary experience with patch-enlarged brachial artery for hemodialysis access. ASAIO J. 53(5), 576–581 (2007)CrossRefGoogle Scholar
  11. 11.
    Di Filippo, S., Manzoni, C., Andrulli, S., et al.: How to determine ionic dialysance for the online assessment of delivered dialysis dose. Kidney Int. 59(2), 774–782 (2001)CrossRefGoogle Scholar
  12. 12.
    Eloot, S., Dhondt, A., Hoeben, H., Vanholder, R.: Comparison of different methods to assess fistula flow. Blood Purificat. 30(2), 89–95 (2010)CrossRefGoogle Scholar
  13. 13.
    Fick, A.: Über die Messung des Blutquantums in den Herzventrikeln. Verh. Phys. Med. Ges. Würzburg 2, 16 (1870)Google Scholar
  14. 14.
    Fox, I.J., Brooker, L.G.S., Heseltine, D.W., Wood, E.H.: A new dye for continuous recording of dilution curves in whole blood independent of variations in blood oxygen saturation. Circulation 14, 937 (1956)Google Scholar
  15. 15.
    Gotch, F.A., Buyaki, R., Panlilio, F.M., Folden, T.: Measurement of blood access flow rate during hemodialysis from conductivity dialysance. ASAIO J. 45(3), 139–146 (1999)CrossRefGoogle Scholar
  16. 16.
    Hamilton, W.F., Moore, J.W., Kinsman, J.M., Spurling, R.G.: Simultaneous determination of the pulmonary circulation times in man and of a figure related to the cardiac output. Am. J. Physiol. 84, 338–344 (1928)Google Scholar
  17. 17.
    Hegglin, R., Rutishauser, W., Kaufmann, G., et al.: Kreislaufdiagnostik mit der Farbstoffverdünnungsmethode. Georg Thieme Verlag, Stuttgart (1962)Google Scholar
  18. 18.
    Henriques, V.: Über die Verteilung des Blutes vom linken Herzen zwischen dem Herzen und dem übrigen Organismus. Biochemische Zeitschrift 56, 230-248 (1913)Google Scholar
  19. 19.
    Hinghofer-Szalkay, H.G., Goswami, N., Rössler, A., et al.: Reactive hyperemia in the human liver. Am. J. Physiol. Gastrointest. Liver Physiol. 295(2), 332–337 (2008)CrossRefGoogle Scholar
  20. 20.
    Kaufman, A.M., Krämer, M., Godmere, R.O., et al.: Hemodialysis access recirculation (R) measurement by blood temperature monitoring (BTM). A new technique. J. Am. Soc. Nephrol. 2, 324 (1991)Google Scholar
  21. 21.
    Kim, H.S., Park, J.W., Chang, J.H., et al.: Early vascular access blood flow as a predictor of long-term vascular access patency in incident hemodialysis patients. J. Korean Med. Sci. 25(5), 728–733 (2010)CrossRefGoogle Scholar
  22. 22.
    King, R.B., Raymond, G.M., Bassingthwaighte, J.B.: Modeling blood flow heterogeneity. Ann. Biomed. Eng. 24(3), 352–372 (1996)CrossRefGoogle Scholar
  23. 23.
    Krisper, P., Martinelli, E., Zierler, E., et al.: More may be less: increasing extracorporeal blood flow in an axillary arterio-arterial access decreases effective clearance. Nephrol. Dial. Transplant. 26(7), 2401–2403 (2011)CrossRefGoogle Scholar
  24. 24.
    Krivitski, N.M.: Novel method to measure access flow during hemodialysis by ultrasound velocity dilution technique. ASAIO J. 41(3), M741–M745 (1995)CrossRefGoogle Scholar
  25. 25.
    Krivitski, N.M., Depner, T.A.: Development of a method for measuring hemodialysis access flow: from idea to robust technology. Semin. Dial. 11(2), 124–130 (1998)CrossRefGoogle Scholar
  26. 26.
    Krivitski, N.M., Schneditz, D.: Arteriovenous vascular access flow measurement: Accuracy and clinical implications. Contrib. Nephrol. 142, 269–284 (2004)CrossRefGoogle Scholar
  27. 27.
    Lassen, N.A., Henriksen, O., Sejrsen, P.: Indicator methods for measurement of organ and tissue blood flow. In: Shepherd, J.T., Abboud, F.M. (eds.) Handbook of Physiology Section 2: The Cardiovascular System, vol. 3, pp. 21–63. American Physiological Society, Bethesda (1983)Google Scholar
  28. 28.
    Lacson Jr., E., Lazarus, J.M., Panlilio, R., Gotch, F.: Comparison of hemodialysis blood access flow rates using online measurement of conductivity dialysance and ultrasound dilution. Am. J. Kidney Dis. 51(1), 99–106 (2008)CrossRefGoogle Scholar
  29. 29.
    Lindsay, R.M., Huang, S.H., Sternby, J., Hertz, T.: The Measurement of hemodialysis access blood flow by a conductivity step method. Clin. J. Am. Soc. Nephrol. 5(9), 1602–1606 (2010)CrossRefGoogle Scholar
  30. 30.
    Lindsay, R.M., Bradfield, E., Rothera, C., et al.: A comparison of methods for the measurement of hemodialysis access recirculation and access blood flow rate. ASAIO J. 44(1), 62–67 (1998)CrossRefGoogle Scholar
  31. 31.
    Lindsay, R.M., Sternby, J., Olde, B., et al.: Hemodialysis blood access flow rates can be estimated accurately from on-line dialysate urea measurements and the knowledge of effective dialyzer urea clearance. Clin. J. Am. Soc. Nephrol. 1(5), 960–964 (2006)CrossRefGoogle Scholar
  32. 32.
    Lomonte, C., Basile, C.: The role of nephrologist in the management of vascular access. Nephrol. Dial. Transplant. 26(5), 1461–1463 (2011)CrossRefGoogle Scholar
  33. 33.
    Marticorena, R.M., Hunter, J., Macleod, S., et al.: Use of the BioHoleTM device for the creation of tunnel tracks for buttonhole cannulation of fistula for hemodialysis. Hemodial. Int. 15(2), 243–249 (2011)CrossRefGoogle Scholar
  34. 34.
    McCarley, P., Wingard, R.L., Shyr, Y., et al.: Vascular access blood flow monitoring reduces access morbidity and costs. Kidney Int. 60(3), 1164–1172 (2001)CrossRefGoogle Scholar
  35. 35.
    Mercadal, L., Hamani, A., Béné, B., Petitclerc, T.: Determination of access blood flow from ionic dialysance: theory and validation. Kidney Int. 56(4), 1560–1565 (1999)CrossRefGoogle Scholar
  36. 36.
    Novljan, G., Rus, R.R., Koren-Jeverica, A., et al.: Detection of dialysis access induced limb ischemia by infrared thermography in children. T. Ther. Apher. Dial. 15(3), 298–305 (2011)CrossRefGoogle Scholar
  37. 37.
    Polaschegg, H.D.: Automatic, noninvasive intradialytic clearance measurement. Int. J. Artif. Organs 16(4), 185–191 (1993)Google Scholar
  38. 38.
    Ragg, J.L., Treacy, J.P., Snelling, P., et al.: Confidence limits of arteriovenous fistula flow rate measured by the ’on-line’ thermodilution technique. Nephrol. Dial. Transplant. 18(5), 955–960 (2003)CrossRefGoogle Scholar
  39. 39.
    Rosales, L.M., Schneditz, D., Morris, A.T., et al.: Isothermic hemodialysis and ultrafiltration. Am. J. Kidney Dis. 36(2), 353–361 (2000)CrossRefGoogle Scholar
  40. 40.
    Schneditz, D.: Recirculation, a seemingly simple concept. Nephrol. Dial. Transplant. 13(9), 2191–2193 (1998)CrossRefGoogle Scholar
  41. 41.
    Schneditz, D., Fan, Z., Kaufman, A.M., Levin, N.W.: Measurement of access flow during hemodialysis using the constant infusion approach. ASAIO J. 44(1), 74–81 (1998a)CrossRefGoogle Scholar
  42. 42.
    Schneditz, D., Fan, Z., Kaufman, A.M., Levin, N.W.: Stability of access resistance during hemodialysis. Nephrol. Dial. Transplant. 13(3), 739–744 (1998b)CrossRefGoogle Scholar
  43. 43.
    Schneditz, D., Krivitski, N.M.: Vascular access recirculation measurement and clinical implications. Contrib. Nephrol. 142, 254–268 (2004)CrossRefGoogle Scholar
  44. 44.
    Schneditz, D., Heimel, H., Stabinger, H.: Sound speed, density and total protein concentration of blood. J. Clin. Chem. Clin. Biochem. 27(10), 803–806 (1989a)Google Scholar
  45. 45.
    Schneditz, D., Kenner, T., Heimel, H., Stabinger, H.: A sound speed sensor for the measurement of total protein concentration in disposable, blood perfused tubes. J. Acoust. Soc. Am. 86(6), 2073–2080 (1989b)CrossRefGoogle Scholar
  46. 46.
    Schneditz, D., Wang, E., Levin, N.W.: Validation of hemodialysis recirculation and access blood flow measured by thermodilution. Nephrol. Dial. Transplant. 14(2), 376–383 (1999)CrossRefGoogle Scholar
  47. 47.
    Schneditz, D., Bachler, I., van der Sande, F.M.: Timing and reproducibility of access flow measurements using extracorporeal temperature gradients. ASAIO J. 53(4), 469–473 (2007a)CrossRefGoogle Scholar
  48. 48.
    Schneditz, D., van der Sande, F.M., Bachler, I., et al.: Access flow measurement by indicator dilution without indicator injection: Effect of switch location. Int. J. Artif. Organs 30(11), 980–986 (2007b)Google Scholar
  49. 49.
    Schneditz, D., Pogglitsch, H., Horina, J., Binswanger, U.: A blood protein monitor for the continuous measurement of blood volume changes during hemodialysis. Kidney Int. 38(2), 342–346 (1990)CrossRefGoogle Scholar
  50. 50.
    Schneditz, D., Probst, W., Kubista, H., Binswanger, U.: Kontinuierliche Blutvolumenmessung im extrakorporellen Kreislauf mit Ultraschall. Nieren und Hochdruckkrankheiten 20, 649–652 (1991)Google Scholar
  51. 51.
    Schneditz, D., Mekaroonkamol, P., Haditsch, B., Stauber, R.: Measurement of indocyanine green dye concentration in the extracorporeal circulation. ASAIO J. 51(4), 376–378 (2005)CrossRefGoogle Scholar
  52. 52.
    Schneditz, D., Kaufman, A.M., Polaschegg, H.D., et al.: Cardiopulmonary recirculation during hemodialysis. Kidney Int. 42(6), 1450–1456 (1992)CrossRefGoogle Scholar
  53. 53.
    Shapiro, W., Gurevich, L.: Inadvertent reversal of hemodialysis lines - a possible cause of decreased hemodialysis (HD) efficiency. J. Am. Soc. Nephrol. 8, 173A (1997)Google Scholar
  54. 54.
    Sherman, R.A., Kapoian, T.: Recirculation, urea disequilibrium, and dialysis efficiency: peripheral arteriovenous versus central venovenous vascular access. Am. J. Kidney Dis. 29(4), 479–489 (1997)CrossRefGoogle Scholar
  55. 55.
    Steil, H., Kaufman, A.M., Morris, A.T., et al. In: vivo verification of an automatic noninvasive system for real time Kt evaluation. ASAIO J. 39(3), M348–M352 (1993)Google Scholar
  56. 56.
    Stewart, G.N.: The output of the heart. J. Physiol. 22, 159–183 (1897)Google Scholar
  57. 57.
    Twardowski, Z.J., Van Stone, J.C., Jones, M.E., et al.: Blood recirculation in intravenous catheters for hemodialysis. J. Am. Soc. Nephrol. 3(12), 1978–1981 (1993)Google Scholar
  58. 58.
    Válek, M., Lopot, F., Polakovic, V.: Arteriovenous fistula, blood flow, cardiac output, and left ventricle load in hemodialysis patients. ASAIO J. 56(3), 200–203 (2010)CrossRefGoogle Scholar
  59. 59.
    van Gemert, M.J., Bruyninckx, C.M., Baggen, M.J.: Shunt haemodynamics and extracorporeal dialysis: an electrical resistance network analysis. Phys. Med. Biol. 29(3), 219–235 (1984)CrossRefGoogle Scholar
  60. 60.
    Vesely, T.M., Gherardini, D., Gleed, R.D., et al.: Use of a catheter-based system to measure blood flow in hemodialysis grafts during angioplasty procedures. J. Vasc. Interv. Radiol. 13(4), 371–378 (2002)CrossRefGoogle Scholar
  61. 61.
    Wang, E., Schneditz, D., Kaufman, A.M., Levin, N.W.: Sensitivity and specificity of the thermodilution technique in detection of access recirculation. Nephron. 85(2), 134–141 (2000)CrossRefGoogle Scholar
  62. 62.
    Wang, E., Schneditz, D., Ronco, C., Levin, N.W.: Surveillance of fistula function by frequent recirculation measurements during high efficiency dialysis. ASAIO J. 48(4), 394–397 (2002)CrossRefGoogle Scholar
  63. 63.
    Whittier, W.L., Mansy, H.A., Rutz, D.R., et al.: Comparison of hemodialysis access flow measurements using flow dilution and in-line dialysance. ASAIO J. 55(4), 369–372 (2009)CrossRefGoogle Scholar
  64. 64.
    Wijnen, E., van der Sande, F.M., Kooman, J.P., et al.: Measurement of hemodialysis vascular access flow using extracorporeal temperature gradients. Kidney Int. 72(6), 736–741 (2007)CrossRefGoogle Scholar
  65. 65.
    Yarar, D., Cheung, A.K., Sakiewicz, P., et al.: Ultrafiltration method for measuring vascular access flow rates during hemodialysis. Kidney Int. 56(3), 1129–1135 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daniel Schneditz
    • 1
  • Laura M. Rosales
    • 2
  • Ahmad Taher Azar
    • 3
  1. 1.Institute of PhysiologyMedical University of GrazGrazAustria
  2. 2.Renal Research InstituteNew YorkUSA
  3. 3.Computer and Software Engineering Department Faculty of EngineeringMisr University for Science & Technology (MUST)6th of October CityEgypt

Personalised recommendations